References

AGARKOVA, Irina, EHLER, Elisabeth, LANGE, Stephan, SCHOENAUER, Roman and PERRIARD, Jean-Claude, 2003. M-band: A safeguard for sarcomere stability? J Muscle Res Cell M. 2003. Vol. 24, no. 2/3, p. 191–203. DOI 10.1023/a:1026094924677.
AIT MOU, Younss, LACAMPAGNE, Alain, IRVING, Thomas, SCHEUERMANN, Valérie, BLOT, Stéphane, GHALEH, Bijan, DE TOMBE, Pieter P. and CAZORLA, Olivier, 2018. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2018. Vol. 114, p. 345–353. DOI gc4psp.
AIT-MOU, Younss, HSU, Karen, FARMAN, Gerrie P., KUMAR, Mohit, GREASER, Marion L., IRVING, Thomas C. and DE TOMBE, Pieter P., 2016. Titin strain contributes to the FrankStarling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proceedings of the National Academy of Sciences. 2016. Vol. 113, no. 8, p. 2306–2311. DOI 10.1073/pnas.1516732113.
ARBORE, Claudia, PEREGO, Laura, SERGIDES, Marios and CAPITANIO, Marco, 2019. Probing force in living cells with optical tweezers: From single-molecule mechanics to cell mechanotransduction. Biophysical Reviews. 2019. Vol. 11, no. 5, p. 765–782. DOI 10.1007/s12551-019-00599-y.
AVAZMOHAMMADI, Reza, HILL, Michael R., SIMON, Marc A., ZHANG, Will and SACKS, Michael S., 2017. A novel constitutive model for passive right ventricular myocardium: Evidence for myofiber–collagen fiber mechanical coupling. Biomechanics and Modeling in Mechanobiology. 2017. Vol. 16, no. 2, p. 561–581. DOI 10.1007/s10237-016-0837-7.
BAKER, Joseph L. and VOTH, Gregory A., 2013. Effects of ATP and Actin-Filament Binding on the Dynamics of the Myosin II S1 Domain. Biophysical Journal. 2013. Vol. 105, no. 7, p. 1624–1634. DOI f5ckxr.
BASTOS, Marcelo B, BURKHOFF, Daniel, MALY, Jiri, DAEMEN, Joost, DEN UIL, Corstiaan A, AMELOOT, Koen, LENZEN, Mattie, MAHFOUD, Felix, ZIJLSTRA, Felix, SCHREUDER, Jan J and VAN MIEGHEM, Nicolas M, 2020. Invasive left ventricle pressure–volume analysis: Overview and practical clinical implications. European Heart Journal. 2020. Vol. 41, no. 12, p. 1286–1297. DOI 10.1093/eurheartj/ehz552.
BERA, Manindra, RADHAKRISHNAN, Abhijith, COLEMAN, Jeff, K. SUNDARAM, R. Venkat, RAMAKRISHNAN, Sathish, PINCET, Frederic and ROTHMAN, James E., 2023. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings of the National Academy of Sciences of the United States of America. 2023. Vol. 120, no. 45, p. e2311484120. DOI 10.1073/pnas.2311484120.
BESTEL, J., CLÉMENT, F. and SORINE, M., 2001. A Biomechanical Model of Muscle Contraction. In: GOOS, Gerhard, HARTMANIS, Juris, VAN LEEUWEN, Jan, NIESSEN, Wiro J. and VIERGEVER, Max A. (eds.), Medical Image Computing and Computer-Assisted InterventionMICCAI 2001. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1159–1161. ISBN 978-3-540-42697-4 978-3-540-45468-7.
BLOCK, Steven M., GOLDSTEIN, Lawrence S. B. and SCHNAPP, Bruce J., 1990. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990. Vol. 348, no. 6299, p. 348–352. DOI 10.1038/348348a0.
BORJA DA ROCHA, Hudson and TRUSKINOVSKY, Lev, 2019. Functionality of Disorder in Muscle Mechanics. Physical Review Letters. 2019. Vol. 122, no. 8, p. 088103. DOI gqj7sz.
BORMUTH, Volker, BARRAL, Jérémie, JOANNY, Jean-François., JÜLICHER, Franck. and MARTIN, Pascal, 2014. Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear. Proceedings of the National Academy of Sciences. 2014. Vol. 111, no. 20, p. 7185–7190. DOI f53stg.
BRITANNICA, Encyclopædia, 2015. Striated muscle; human biceps muscle. 2015.
BRUNELLO, Elisabetta, BIANCO, Pasquale, PIAZZESI, Gabriella, LINARI, Marco, RECONDITI, Massimo, PANINE, Pierre, NARAYANAN, Theyencheri, HELSBY, William I., IRVING, Malcolm and LOMBARDI, Vincenzo, 2006. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: Stiffness and X-ray diffraction measurements. Journal of Physiology. 2006. Vol. 577, no. 3, p. 971–984. DOI 10.1113/jphysiol.2006.115394.
BRUNELLO, Elisabetta and FUSI, Luca, 2024. Regulating Striated Muscle Contraction: Through Thick and Thin. Annual Review of Physiology. 2024. Vol. 86, no. 1, p. annurev-physiol-042222-022728. DOI 10.1146/annurev-physiol-042222-022728.
BUONFIGLIO, Valentina, PERTICI, Irene, MARCELLO, Matteo, MOROTTI, Ilaria, CAREMANI, Marco, RECONDITI, Massimo, LINARI, Marco, FANELLI, Duccio, LOMBARDI, Vincenzo and BIANCO, Pasquale, 2024. Force and kinetics of fast and slow muscle myosin determined with a synthetic sarcomere–like nanomachine. Communications Biology. 2024. Vol. 7, no. 1, p. 1–12. DOI 10.1038/s42003-024-06033-8.
CAPITANIO, Marco, CANEPARI, Monica, MAFFEI, Manuela, BENEVENTI, Diego, MONICO, Carina, VANZI, Francesco, BOTTINELLI, Roberto and PAVONE, Francesco Saverio, 2012. Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nature Methods. 2012. Vol. 9, no. 10, p. 1013–1019. DOI f4bt6v.
CAREMANI, Marco, MARCELLO, Matteo, MOROTTI, Ilaria, PERTICI, Irene, SQUARCI, Caterina, RECONDITI, Massimo, BIANCO, Pasquale, PIAZZESI, Gabriella, LOMBARDI, Vincenzo and LINARI, Marco, 2022. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles. Communications Biology. 2022. Vol. 5, no. 1, p. 1–12. DOI 10.1038/s42003-022-04184-0.
CAREMANI, Marco, MELLI, Luca, DOLFI, Mario, LOMBARDI, Vincenzo and LINARI, Marco, 2013. The working stroke of the myosin II motor in muscle is not tightly coupled to release of orthophosphate from its active site. J Physiol. 2013. Vol. 591, no. 20, p. 5187–5205. DOI f5d42k.
CAREMANI, Marco, MELLI, Luca, DOLFI, Mario, LOMBARDI, Vincenzo and LINARI, Marco, 2015. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products: Chemo-mechanical coupling during muscle shortening. J Physiol. 2015. Vol. 593, no. 15, p. 3313–3332. DOI f7kxch.
CAREMANI, Marco, PINZAUTI, Francesca, RECONDITI, Massimo, PIAZZESI, Gabriella, STIENEN, Ger J. M., LOMBARDI, Vincenzo and LINARI, Marco, 2016. Size and speed of the working stroke of cardiac myosin in situ. Proceedings of the National Academy of Sciences. 2016. Vol. 113, no. 13, p. 3675–3680. DOI f8f2sh.
CARUEL, Matthieu, 2011. Mechanics of Fast Force Recovery in striated muscles. Ecole Polytechnique.
CARUEL, Matthieu, ALLAIN, Jean-Marc and TRUSKINOVSKY, Lev, 2013. Muscle as a Metamaterial Operating Near a Critical Point. Physical Review Letters. 2013. Vol. 110, no. 24, p. 248103. DOI gmtzn5.
CARUEL, Matthieu, ALLAIN, Jean-Marc and TRUSKINOVSKY, Lev, 2015. Mechanics of collective unfolding. Journal of the Mechanics and Physics of Solids. 2015. Vol. 76, p. 237–259. DOI f639qf.
CARUEL, Matthieu, CHABINIOK, Radomir, MOIREAU, Philippe, LECARPENTIER, Yves and CHAPELLE, Dominique, 2014. Dimensional reductions of a cardiac model for effective validation and calibration. Biomechanics and Modeling in Mechanobiology. 2014. Vol. 13, no. 4, p. 897–914. DOI gmtzn6.
CARUEL, Matthieu, DETREZ, Fabrice, NAVIZET, Isabelle and MANEVY, Robin, 2022. Umbrella Sampling for the estimation of the free energy barrier of Pi release in Myosin. In: 27th congress of the european society of biomechanics. Online. Porto, Portugal. 2022. Available from: https://hal-upec-upem.archives-ouvertes.fr/hal-03727763
CARUEL, Matthieu, MOIREAU, Philippe and CHAPELLE, Dominique, 2019. Stochastic modeling of chemical–mechanical coupling in striated muscles. Biomechanics and Modeling in Mechanobiology. 2019. Vol. 18, no. 3, p. 563–587. DOI 10.1007/s10237-018-1102-z.
CARUEL, Matthieu and PINCET, Frédéric, 2024. Dual-Ring SNAREpin Machinery Tuning for Fast Synaptic Vesicle Fusion. Biomolecules. 2024. Vol. 14, no. 5, p. 600. DOI 10.3390/biom14050600.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2016. Statistical mechanics of the Huxley-Simmons model. Physical Review E. 2016. Vol. 93, no. 6, p. 062407. DOI gkpp6d.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2017. Bi-stability resistant to fluctuations. Journal of the Mechanics and Physics of Solids. 2017. Vol. 109, p. 117–141. DOI gcgxxs.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2018. Physics of muscle contraction. Reports on Progress in Physics. 2018. Vol. 81, no. 3, p. 036602. DOI gf8wq6.
CECCHINI, Marco, ALEXEEV, Yuri and KARPLUS, Martin, 2010. Pi Release from Myosin: A Simulation Analysis of Possible Pathways. Structure. 2010. Vol. 18, no. 4, p. 458–470. DOI 10.1016/j.str.2010.01.014.
CHABINIOK, Radomir, WANG, Vicky Y., HADJICHARALAMBOUS, Myrianthi, ASNER, Liya, LEE, Jack, SERMESANT, Maxime, KUHL, Ellen, YOUNG, Alistair A., MOIREAU, Philippe, NASH, Martyn P., CHAPELLE, Dominique and NORDSLETTEN, David A., 2016. Multiphysics and multiscale modelling, datamodel fusion and integration of organ physiology in the clinic. Interface Focus. 2016. Vol. 6, no. 2, p. 20150083. DOI 10.1098/rsfs.2015.0083.
CHAINTRON, Louis-Pierre, CARUEL, Matthieu and KIMMIG, François, 2023. Modeling actin-myosin interaction: Beyond the Huxley–Hill Framework. MathematicS In Action. 2023. Vol. 12, no. 1, p. 191–226. DOI 10.5802/msia.38.
CHAINTRON, Louis-Pierre and DIEZ, Antoine, 2022a. Propagation of chaos: A review of models, methods and applications. I. Models and methods. Kinetic and Related Models. 2022. Vol. 15, no. 6, p. 895–1015. DOI 10.3934/krm.2022017.
CHAINTRON, Louis-Pierre and DIEZ, Antoine, 2022b. Propagation of chaos: A review of models, methods and applications. II. applications. Kinetic and Related Models. 2022. Vol. 15, no. 6, p. 1017–1173. DOI 10.3934/krm.2022018.
CHAINTRON, Louis-Pierre, KIMMIG, François, CARUEL, Matthieu and MOIREAU, Philippe, 2023. A jump-diffusion stochastic formalism for muscle contraction models at multiple timescales. Journal of Applied Physics. 2023. Vol. 134, no. 19, p. 194901. DOI 10.1063/5.0158191.
CHANGEUX, Jean-Pierre, THIÉRY, Jean, TUNG, Yvonne and KITTEL, C., 1967. On the Cooperativity of Biological Membranes. Proceedings of the National Academy of Sciences. 1967. Vol. 57, no. 2, p. 335–341. DOI brqnsp.
CHAPELLE, Dominique, TALLEC, Patrick Le, MOIREAU, Philippe and SORINE, M., 2012. An energy-preserving muscle tissue model: Formulation and compatible discretizations. International Journal For Multiscale Computational Engineering. 2012. Vol. 10, no. 2, p. 189–211.
CHENG, Yu-Shu, LEITE, Felipe de Souza and RASSIER, Dilson E., 2020. The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles. Am J Physiol-cell Ph. 2020. Vol. 318, no. 1, p. C103–C110. DOI 10.1152/ajpcell.00339.2019.
COLORADO-CERVANTES, J. I., NARDINOCCHI, P., PIRAS, P., SANSALONE, V., TERESI, L., TORROMEO, C. and PUDDU, P. E., 2022. Patient-specific modeling of left ventricle mechanics. Acta Mechanica Sinica. 2022. Vol. 38, no. 1, p. 621211. DOI 10.1007/s10409-021-09041-0.
CRAIG, Roger W and PADRÓN, Raúl, 2004. Molecular Structure of the Sarcomere. In: Myology. 3. The McGraw-Hill Companies, Inc. p. 129–144. ISBN 0-07-137180-X.
DAMON, Bruce M., FROELING, Martijn, BUCK, Amanda K. W., OUDEMAN, Jos, DING, Zhaohua, NEDERVEEN, Aart J., BUSH, Emily C. and STRIJKERS, Gustav J., 2017. Skeletal muscle diffusion tensor-MRI fiber tracking: Rationale, data acquisition and analysis methods, applications and future directions. NMR in Biomedicine. 2017. Vol. 30, no. 3, p. e3563. DOI 10.1002/nbm.3563.
DAWSON, Donald A and GÄRTNER, J, 1986. Large deviations and tunnelling for particle systems with mean field interaction. CR Math. Rep. Acad. Sci. Canada. Online. 1986. Vol. 8, no. 6, p. 387–392. Available from: https://mathreports.ca/article/large-deviations-and-tunnelling-for-particle-systems-with-mean-field-interaction/
DAY, Sharlene M., TARDIFF, Jil C. and OSTAP, E. Michael, 2022. Myosin modulators: Emerging approaches for the treatment of cardiomyopathies and heart failure. The Journal of Clinical Investigation. 2022. Vol. 132, no. 5. DOI 10.1172/JCI148557.
DE TOMBE, P P and TER KEURS, H E, 1990. Force and velocity of sarcomere shortening in trabeculae from rat heart. Effects of temperature. Circulation Research. 1990. Vol. 66, no. 5, p. 1239–1254. DOI gmtztb.
DOBESH, David P, KONHILAS, John P and TOMBE, Pieter P de, 2002. Cooperative activation in cardiac muscle: Impact of sarcomere length. American Journal of Physiology-Heart and Circulatory Physiology. 2002. Vol. 282, no. 3, p. H1055–H1062. DOI 10.1152/ajpheart.00667.2001.
DOKOS, Socrates, SMAILL, Bruce H., YOUNG, Alistair A. and LEGRICE, Ian J., 2002. Shear properties of passive ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology. 2002. Vol. 283, no. 6, p. H2650–H2659. DOI 10.1152/ajpheart.00111.2002.
DOMINGUEZ, Roberto, FREYZON, Yelena, TRYBUS, Kathleen M. and COHEN, Carolyn, 1998. Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain: Visualization of the PrePower Stroke State. Cell. Online. 1998. Vol. 94, no. 5, p. 559–571. DOI 10.1016/S0092-8674(00)81598-6. [Accessed 8 November 2023].
DUKE, T. A. J., 1999. Molecular model of muscle contraction. Proceedings of the National Academy of Sciences. 1999. Vol. 96, no. 6, p. 2770–2775. DOI d4xwdb.
EISENBERG, Evan and HILL, Terrell L., 1979. A cross-bridge model of muscle contraction. Progress in Biophysics and Molecular Biology. 1979. Vol. 33, p. 55–82. DOI bdpfkn.
ERDMANN, T. and SCHWARZ, U. S., 2007. Impact of receptor-ligand distance on adhesion cluster stability. Eur. Phys. J. E. 2007. Vol. 22, no. 2, p. 123–137. DOI cvn2q5.
FILIPOVIC, Nenad, SUSTERSIC, Tijana, MILOSEVIC, Miljan, MILICEVIC, Bogdan, SIMIC, Vladimir, PRODANOVIC, Momcilo, MIJAILOVIC, Srboljub and KOJIC, Milos, 2022. SILICOFCM platform, multiscale modeling of left ventricle from echocardiographic images and drug influence for cardiomyopathy disease. Computer Methods and Programs in Biomedicine. 2022. Vol. 227, p. 107194. DOI 10.1016/j.cmpb.2022.107194.
FINER, Jeffrey T., SIMMONS, Robert M. and SPUDICH, James A., 1994. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature. 1994. Vol. 368, no. 6467, p. 113–119. DOI 10.1038/368113a0.
FISCHER, S., WINDSHUGEL, B., HORAK, D., HOLMES, K. C. and SMITH, J. C., 2005. Structural mechanism of the recovery stroke in the Myosin molecular motor. Proceedings of the National Academy of Sciences. 2005. Vol. 102, no. 19, p. 6873–6878. DOI d3s2fb.
FOËX, P. and LEONE, B. J., 1994. Pressure-volume loops: A dynamic approach to the assessment of ventricular function. Journal of Cardiothoracic and Vascular Anesthesia. 1994. Vol. 8, no. 1, p. 84–96. DOI 10.1016/1053-0770(94)90020-5.
FORD, L E, HUXLEY, A F and SIMMONS, R M, 1981. The relation between stiffness and filament overlap in stimulated frog muscle fibres. The Journal of Physiology. Online. 1981. Vol. 311, no. 1, p. 219–249. DOI gmjmmd. [Accessed 16 September 2021].
FRANK, Derk and FREY, Norbert, 2011. Cardiac Z-disc Signaling Network. Journal of Biological Chemistry. Online. 2011. Vol. 286, no. 12, p. 9897–9904. DOI 10.1074/jbc.R110.174268. [Accessed 3 January 2024].
GAO, H, QIAN, J and CHEN, B, 2011. Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework. Journal of the Royal Society Interface. 2011. Vol. 8, no. 62, p. 1217–1232. DOI 10.1098/rsif.2011.0157.
GEORGE, Melvin, RAJARAM, Muthukumar, SHANMUGAM, Elangovan and VIJAYAKUMAR, Thangavel Mahalingam, 2014. Novel drug targets in clinical development for heart failure. Eur J Clin Pharmacol. 2014. Vol. 70, no. 7, p. 765–74. DOI 10.1007/s00228-014-1671-4.
GERULL, Brenda, GRAMLICH, Michael, ATHERTON, John, MCNABB, Mark, TROMBITÁS, Karoly, SASSE-KLAASSEN, Sabine, SEIDMAN, J. G., SEIDMAN, Christine, GRANZIER, Henk, LABEIT, Siegfried, FRENNEAUX, Michael and THIERFELDER, Ludwig, 2002. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002. Vol. 30, no. 2, p. 201–204. DOI 10.1038/ng815.
GÖKTEPE, Serdar, MENZEL, Andreas and KUHL, Ellen, 2014. The generalized Hill model: A kinematic approach towards active muscle contraction. Journal of the Mechanics and Physics of Solids. 2014. Vol. 72, p. 20–39. DOI f24qpv.
GRANZIER, Henk, WU, Yiming, SIEGFRIED, Labeit and LEWINTER, Martin, 2005. Titin: Physiological Function and Role in Cardiomyopathy and Failure. Heart Fail Rev. 2005. Vol. 10, no. 3, p. 211–223. DOI bqqzhf.
GUÉRIN, Thomas, PROST, Jacques, MARTIN, Pascal and JOANNY, Jean-François, 2010. Coordination and collective properties of molecular motors: theory. Current Opinion in Cell Biology. 2010. Vol. 22, no. 1, p. 14–20. DOI c4hrnm.
GUÉRIN, Thomas, PROST, J. and JOANNY, J.-F., 2010. Dynamic Instabilities in Assemblies of Molecular Motors with Finite Stiffness. Physical Review Letters. Online. 2010. Vol. 104, no. 24, p. 248102. DOI cmftsw. [Accessed 16 September 2021].
GUÉRIN, T., PROST, J. and JOANNY, J. -F., 2011. Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E. 2011. Vol. 34, no. 6, p. 60. DOI dwphkc.
GUREL, Pinar S, KIM, Laura Y, RUIJGROK, Paul V, OMABEGHO, Tosan, BRYANT, Zev and ALUSHIN, Gregory M, 2017. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. eLife. 2017. Vol. 6, p. e31125. DOI 10.7554/eLife.31125.
HARNE, R L, WU, Z and WANG, K W, 2015. Mechanical Properties Adaptivity by the Design and Exploitation of Metastable States in a Modular Metastructure. ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2015. P. V001T01A014–V001T01A014. DOI 10.1115/smasis2015-9018.
HARNE, R. L., WU, Z. and WANG, K. W., 2016. Designing and Harnessing the Metastable States of a Modular Metastructure for Programmable Mechanical Properties Adaptation. Journal of Mechanical Design. 2016. Vol. 138, no. 2, p. 021402. DOI gfw466.
HELING, L. W. H. J., GEEVES, M. A. and KAD, N. M., 2020. MyBP-C: One protein to govern them all. Journal of Muscle Research and Cell Motility. Online. 2020. Vol. 41, no. 1, p. 91–101. DOI 10.1007/s10974-019-09567-1. [Accessed 3 January 2024].
HENDERSON, Christine A., GOMEZ, Christopher G., NOVAK, Stefanie M., MI-MI, Lei and GREGORIO, Carol C., 2017. Overview of the Muscle Cytoskeleton. In: Comprehensive Physiology. Online. John Wiley & Sons, Ltd. p. 891–944. ISBN 978-0-470-65071-4. [Accessed 3 January 2024].
HERWIG, Melissa, KOLIJN, Detmar, LÓDI, Mária, HÖLPER, Soraya, KOVÁCS, Árpád, PAPP, Zoltán, JAQUET, Kornelia, HALDENWANG, Peter, REMEDIOS, Cris Dos, REUSCH, Peter H., MÜGGE, Andreas, KRÜGER, Marcus, FIELITZ, Jens, LINKE, Wolfgang A. and HAMDANI, Nazha, 2020. Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Front Physiol. 2020. Vol. 11, p. 240. DOI 10.3389/fphys.2020.00240.
HERZOG, Walter and SCHAPPACHER-TILP, Gudrun, 2023. Molecular mechanisms of muscle contraction: A historical perspective. Journal of Biomechanics. Online. 2023. Vol. 155, p. 111659. DOI 10.1016/j.jbiomech.2023.111659. [Accessed 11 October 2023].
HILL, Terrell L., 1974. Theoretical formalism for the sliding filament model of contraction of striated muscle Part I. Prog Biophys Mol Bio. 1974. Vol. 28, p. 267–340. DOI cwsfsx.
HILL, Terrell L., 1976. Theoretical formalism for the sliding filament model of contraction of striated muscle part II. Progress in Biophysics and Molecular Biology. 1976. Vol. 29, p. 105–159. DOI b4z7px.
HINSON, John T, CHOPRA, Anant, NAFISSI, Navid, POLACHECK, William J, BENSON, Craig C, SWIST, Sandra, GORHAM, Joshua, YANG, Luhan, SCHAFER, Sebastian, SHENG, Calvin C, HAGHIGHI, Alireza, HOMSY, Jason, HUBNER, Norbert, CHURCH, George, COOK, Stuart A, LINKE, Wolfgang A, CHEN, Christopher S, SEIDMAN, J G and SEIDMAN, Christine E, 2015. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015. Vol. 349, no. 6251, p. 982–986. DOI f7qdj4.
HOLZBAUR, Erika LF and GOLDMAN, Yale E, 2010. Coordination of molecular motors: From in vitro assays to intracellular dynamics. Current Opinion in Cell Biology. 2010. Vol. 22, no. 1, p. 4–13. DOI djb3hh.
HOSHINO, T, FUJIWARA, H, KAWAI, C and HAMASHIMA, Y, 1983. Myocardial fiber diameter and regional distribution in the ventricular wall of normal adult hearts, hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation. 1983. Vol. 67, no. 5, p. 1109–1116. DOI 10.1161/01.CIR.67.5.1109.
HOUDUSSE, Anne M., AUGUIN, Daniel, ROBERT-PAGANIN, Julien, KIKUTI, Carlos and CANON, Louise, 2024. Small molecules modulating force production: A promising strategy to treat myosin-associated diseases. Biophysical Journal. 2024. Vol. 123, no. 3, p. 466a. DOI 10.1016/j.bpj.2023.11.2821.
HOUDUSSE, Anne and SWEENEY, H. Lee, 2016. How Myosin Generates Force on Actin Filaments. Trends in Biochemical Sciences. 2016. Vol. 41, no. 12, p. 989–997. DOI f9c8jf.
HUXLEY, Aandrew F and SIMMONS, Robert M, 1971. Proposed mechanism of force generation in striated muscle. Nature. 1971. Vol. 233, no. 5321, p. 533–538.
HUXLEY, Andrew F, 1957. Muscle structure and theories of contraction. Progress in biophysics and biophysical chemistry. 1957. Vol. 7, p. 255–318.
HUXLEY, Hugh. E., 1957. The Double array of filaments in cross-striated muscle. The Journal of Biophysical and Biochemical Cytology. Online. 1957. Vol. 3, no. 5, p. 631–648. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224118/
JANSSEN, P. M. and HUNTER, W. C., 1995. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. American Journal of Physiology-Heart and Circulatory Physiology. 1995. Vol. 269, no. 2, p. H676–H685. DOI gmtz3f.
JÜLICHER, F and PROST, J, 1995. Cooperative molecular motors. Physical Review Letters. 1995. Vol. 75, no. 13, p. 2618–2621.
JÜLICHER, F and PROST, J, 1997. Spontaneous oscillations of collective molecular motors. Physical Review Letters. 1997. Vol. 78, no. 23, p. 4510–4513. DOI 10.1103/physrevlett.78.4510.
JÜLICHER, Frank, AJDARI, Armand and PROST, Jacques, 1997. Modeling molecular motors. Reviews of Modern Physics. 1997. Vol. 69, no. 4, p. 1269–1282. DOI dvk9kt.
KALGANOV, Albert, SHALABI, Nabil, ZITOUNI, Nedjma, KACHMAR, Linda Hussein, LAUZON, Anne-Marie and RASSIER, Dilson E., 2013. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures. Biochimica et Biophysica Acta (BBA) - General Subjects. 2013. Vol. 1830, no. 3, p. 2710–2719. DOI 10.1016/j.bbagen.2012.11.022.
KAYA, Motoshi, TANI, Yoshiaki, WASHIO, Takumi, HISADA, Toshiaki and HIGUCHI, Hideo, 2017. Coordinated force generation of skeletal myosins in myofilaments through motor coupling. Nat Commun. 2017. Vol. 8, no. 1, p. 16036. DOI gbkxhq.
KENTISH, J C, TER KEURS, H E, RICCIARDI, L, BUCX, J J and NOBLE, M I, 1986. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circulation Research. 1986. Vol. 58, no. 6, p. 755–768. DOI 10.1161/01.res.58.6.755.
KIDAMBI, Narayanan, HARNE, Ryan L and WANG, K W, 2017. Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle. Smart Mater. Struct. 2017. Vol. 26, no. 8, p. 085011. DOI gmc7xc.
KIMMIG, François, 2019. Modélisation multi-Échelles de la contraction musculaire: De la dynamique stochastique des moteurs moléculaires à la mécanique des milieux continus.
KIMMIG, François and CARUEL, Matthieu, 2020. Hierarchical modeling of force generation in cardiac muscle. Biomechanics and Modeling in Mechanobiology. 2020. Vol. 19, no. 6, p. 2567–2601. DOI 10.1007/s10237-020-01357-w.
KIMMIG, François, CARUEL, Matthieu and CHAPELLE, Dominique, 2022. Varying thin filament activation in the framework of the Huxley’57 model. International Journal for Numerical Methods in Biomedical Engineering. 2022. Vol. 38, no. 12, p. e3655. DOI 10.1002/cnm.3655.
KIMMIG, François, CHAPELLE, Dominique and MOIREAU, Philippe, 2019. Thermodynamic properties of muscle contraction models and associated discrete-time principles. Advanced Modeling and Simulation in Engineering Sciences. 2019. Vol. 6, no. 1, p. 6. DOI gmtzrb.
KIMMIG, François, MOIREAU, Philippe and CHAPELLE, Dominique, 2021. Hierarchical modeling of length-dependent force generation in cardiac muscles and associated thermodynamically-consistent numerical schemes. Comput Mech. 2021. P. 1–36. DOI 10.1007/s00466-021-02051-z.
LANGE, Stephan, PINOTSIS, Nikos, AGARKOVA, Irina and EHLER, Elisabeth, 2019. The M-band: The underestimated part of the sarcomere. Biochimica Et Biophysica Acta Bba - Mol Cell Res. 2019. Vol. 1867, p. 118440. DOI 10.1016/j.bbamcr.2019.02.003.
LEGRICE, I. J., SMAILL, B. H., CHAI, L. Z., EDGAR, S. G., GAVIN, J. B. and HUNTER, P. J., 1995. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. American Journal of Physiology-Heart and Circulatory Physiology. 1995. Vol. 269, no. 2, p. H571–H582. DOI 10.1152/ajpheart.1995.269.2.H571.
LEITE, Felipe de Souza and RASSIER, Dilson E., 2020. Sarcomere length non-uniformity and force regulation in myofibrils and sarcomeres. Biophys J. 2020. Vol. 119, no. 12, p. 2372–2377. DOI 10.1016/j.bpj.2020.11.005.
LI, Jia, SUNDNES, Joakim, HOU, Yufeng, LAASMAA, Martin, RUUD, Marianne, UNGER, Andreas, KOLSTAD, Terje R., FRISK, Michael, NORSENG, Per Andreas, YANG, Limin, SETTERBERG, Ingunn E., ALVES, Estela S., KALAKOUTIS, Michaeljohn, SEJERSTED, Ole M., LANNER, Johanna T., LINKE, Wolfgang A., LUNDE, Ida G., DE TOMBE, Pieter P. and LOUCH, William E., 2023. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circulation Research. 2023. Vol. 133, no. 3, p. 255–270. DOI 10.1161/CIRCRESAHA.123.322588.
LINARI, Marco, BRUNELLO, Elisabetta, RECONDITI, Massimo, FUSI, Luca, CAREMANI, Marco, NARAYANAN, Theyencheri, PIAZZESI, Gabriella, LOMBARDI, Vincenzo and IRVING, Malcolm, 2015. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature. 2015. Vol. 528, no. 7581, p. 276–279. DOI 10.1038/nature15727.
LINARI, Marco, DOBBIE, Ian, RECONDITI, Massimo, KOUBASSOVA, Natalia, IRVING, Malcolm, PIAZZESI, Gabriella and LOMBARDI, Vincenzo, 1998. The Stiffness of Skeletal Muscle in Isometric Contraction and Rigor: The Fraction of Myosin Heads Bound to Actin. Biophysical Journal. Online. 1998. Vol. 74, no. 5, p. 2459–2473. DOI bkzvq6. [Accessed 16 September 2021].
LINKE, Wolfgang A., 2023. Stretching the story of titin and muscle function. Journal of Biomechanics. 2023. Vol. 152, p. 111553. DOI 10.1016/j.jbiomech.2023.111553.
LINKE, Wolfgang A. and KRÜGER, Martina, 2010. The Giant Protein Titin as an Integrator of Myocyte Signaling Pathways. Physiology. 2010. Vol. 25, no. 3, p. 186–198. DOI d6nqvw.
LLINAS, Paola, ISABET, Tatiana, SONG, Lin, ROPARS, Virginie, ZONG, Bin, BENISTY, Hannah, SIRIGU, Serena, MORRIS, Carl, KIKUTI, Carlos, SAFER, Dan, SWEENEY, H. Lee and HOUDUSSE, Anne, 2015. How Actin Initiates the Motor Activity of Myosin. Developmental Cell. 2015. Vol. 33, no. 4, p. 401–412. DOI f7cvg8.
LOOKIN, Oleg, KHOKHLOVA, Anastasia and CAZORLA, Olivier, 2022. Contractile State Dependent Sarcomere Length Variability in Isolated Guinea-Pig Cardiomyocytes. Frontiers in Physiology. 2022. Vol. 13. DOI 10.3389/fphys.2022.857471.
LYMN, R. W. and TAYLOR, E. W., 1971. Mechanism of Adenosine Triphosphate Hydrolysis by Actomyosin. Biochemistry. 1971. Vol. 10, no. 25, p. 4617–4624. DOI dvbcct.
MA, Hong, XING, Fei, YU, Peiyun, XU, Jiawei, WU, Xinyu, LUO, Rong, XIANG, Zhou, MARIA ROMMENS, Pol, DUAN, Xin and RITZ, Ulrike, 2023. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: Current status and future perspectives. Materials & Design. 2023. Vol. 225, p. 111591. DOI 10.1016/j.matdes.2023.111591.
MAGNASCO, Marcelo O., 1993. Forced thermal ratchets. Physical Review Letters. 1993. Vol. 71, no. 10, p. 1477–1481. DOI dtk497.
MALIK, F. I., HARTMAN, J. J., ELIAS, K. A., MORGAN, B. P., RODRIGUEZ, H., BREJC, K., ANDERSON, R. L., SUEOKA, S. H., LEE, K. H., FINER, J. T., SAKOWICZ, R., BALIGA, R., COX, D. R., GARARD, M., GODINEZ, G., KAWAS, R., KRAYNACK, E., LENZI, D., LU, P. P., MUCI, A., NIU, C., QIAN, X., PIERCE, D. W., POKROVSKII, M., SUEHIRO, I., SYLVESTER, S., TOCHIMOTO, T., VALDEZ, C., WANG, W., KATORI, T., KASS, D. A., SHEN, Y.-T., VATNER, S. F. and MORGANS, D. J., 2011. Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure. Science. 2011. Vol. 331, no. 6023, p. 1439–1443. DOI d5qnnp.
MANCA, Fabio, PINCET, Frederic, TRUSKINOVSKY, Lev, ROTHMAN, James E., FORET, Lionel and CARUEL, Matthieu, 2019. SNARE machinery is optimized for ultrafast fusion. Proceedings of the National Academy of Sciences. 2019. Vol. 116, no. 7, p. 2435–2442. DOI gmn5g3.
MANEVY, Robin, 2023. Caractérisation du départ du phosphate de la myosine VI par simulations de dynamique moléculaire. Université Gustave Eiffet.
MANEVY, Robin, CARUEL, Matthieu, DETREZ, Fabrice and NAVIZET, 2021. Identification of Free Energy Barriers Associated With Transition In Myosin cycle Using Umbrella Sampling. In: Workshop Les Houches Protein Dynamics. Congrès virtuel. 2021.
MANEVY, Robin, DETREZ, Fabrice, NAVIZET, Isabelle and CARUEL, Matthieu, 2021. Étude mécanique d’une protéine du muscle. In: Journée Thématique Biomécanique et Biomatériaux F2M. online. 2021.
MANGANOTTI, Jessica, CAFORIO, Federica, KIMMIG, François, MOIREAU, Philippe and IMPERIALE, Sebastien, 2021. Coupling reduced-order blood flow and cardiac models through energy-consistent strategies: Modeling and discretization. Advanced Modeling and Simulation in Engineering Sciences. Online. 2021. Vol. 8, no. 1, p. 21. DOI 10.1186/s40323-021-00206-4. [Accessed 30 May 2024].
MÅNSSON, Alf, 2010. Actomyosin-ADP States, Interhead Cooperativity, and the Force-Velocity Relation of Skeletal Muscle. Biophysical Journal. 2010. Vol. 98, no. 7, p. 1237–1246. DOI crwdh6.
MÅNSSON, Alf, 2016. Actomyosin based contraction: One mechanokinetic model from single molecules to muscle? J Muscle Res Cell Motil. 2016. Vol. 37, no. 6, p. 181–194. DOI f9sbhb.
MÅNSSON, Alf, 2019. Comparing models with one versus multiple myosin-binding sites per actin target zone: The power of simplicity. Journal of General Physiology. 2019. Vol. 151, no. 4, p. 578–592. DOI 10.1085/jgp.201812301.
MÅNSSON, Alf, 2020. Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int J Mol Sci. 2020. Vol. 21, no. 21, p. 8399. DOI 10.3390/ijms21218399.
MARCUCCI, L. and TRUSKINOVSKY, L., 2010. Mechanics of the power stroke in myosin II. Physical Review E. 2010. Vol. 81, no. 5, p. 051915. DOI c9xrzx.
MARON, Barry J and MARON, Martin S, 2013. Hypertrophic cardiomyopathy. The Lancet. 2013. Vol. 381, no. 9862, p. 242–255. DOI 10.1016/s0140-6736(12)60397-3.
MARSTON, Steven, 2022. Force Measurements From Myofibril to Filament. Frontiers in Physiology. 2022. Vol. 12, p. 817036. DOI 10.3389/fphys.2021.817036.
MCKILLOP, D. F. and GEEVES, M. A., 1993. Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophysical Journal. 1993. Vol. 65, no. 2, p. 693–701. DOI 10.1016/S0006-3495(93)81110-X.
MÉNÉTREY, Julie, BAHLOUL, Amel, WELLS, Amber L., YENGO, Christopher M., MORRIS, Carl A., SWEENEY, H. Lee and HOUDUSSE, Anne, 2005. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature. 2005. Vol. 435, no. 7043, p. 779–785. DOI 10.1038/nature03592.
MILIĆEVIĆ, Bogdan, IVANOVIĆ, Miloš, STOJANOVIĆ, Boban, MILOŠEVIĆ, Miljan, KOJIĆ, Miloš and FILIPOVIĆ, Nenad, 2022. Huxley muscle model surrogates for high-speed multi-scale simulations of cardiac contraction. Computers in Biology and Medicine. Online. 2022. Vol. 149, p. 105963. DOI 10.1016/j.compbiomed.2022.105963. [Accessed 4 October 2023].
MOBLEY, Bert A and EISENBERG, Brenda R, 1975. Sizes of components in frog skeletal muscle measured by methods of stereology. Journal of General Physiology. 1975. Vol. 66, no. 1, p. 31–45. DOI cm8s33.
MOLLOY, Justin E, BURNS, Julie E, SPARROW, John C, TREGEAR, Richard T, KENDRICK-JONES, John and WHITE, David C S, 1995. Single-Molecule Mechanics of Heavy Meromyosin and Si Interacting with Rabbit or Drosophila Actins Using Optical Tweezers. Biophysical Journal. 1995. Vol. 68, p. 6.
MONOD, J, WYMAN, J and CHANGEUX, J P, 1965. On The Nature Of Allosteric Transitions: A Plausible Model. J. Mol. Biol. 1965. Vol. 12, p. 88–118.
MOO, Eng Kuan and HERZOG, Walter, 2018. Single sarcomere contraction dynamics in a whole muscle. Scientific Reports. Online. 2018. Vol. 8, no. 1, 1, p. 15235. DOI 10.1038/s41598-018-33658-7. [Accessed 4 October 2023].
MORITA, Hiroyuki, REHM, Heidi L, MENESSES, Andres, MCDONOUGH, Barbara, ROBERTS, Amy E, KUCHERLAPATI, Raju, TOWBIN, Jeffrey A, SEIDMAN, J G and SEIDMAN, Christine E, 2008. Shared Genetic Causes of Cardiac Hypertrophy in Children and Adults. New England Journal of Medicine. 2008. Vol. 358, no. 18, p. 1899–1908. DOI 10.1056/nejmoa075463.
NADKARNI, Neel, ARRIETA, Andres F., CHONG, Christopher, KOCHMANN, Dennis M. and DARAIO, Chiara, 2016. Unidirectional Transition Waves in Bistable Lattices. Physical Review Letters. 2016. Vol. 116, no. 24, p. 244501. DOI gf2mms.
NAG, Suman, GOLLAPUDI, Sampath K., DEL RIO, Carlos L., SPUDICH, James A. and MCDOWELL, Robert, 2023. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients. Science Advances. 2023. Vol. 9, no. 30, p. eabo7622. DOI 10.1126/sciadv.abo7622.
NARDINOCCHI, Paola and TERESI, Luciano, 2007. On the Active Response of Soft Living Tissues. Journal of Elasticity. 2007. Vol. 88, no. 1, p. 27–39. DOI 10.1007/s10659-007-9111-7.
NIELLES-VALLESPIN, Sonia, KHALIQUE, Zohya, FERREIRA, Pedro F., DE SILVA, Ranil, SCOTT, Andrew D., KILNER, Philip, MCGILL, Laura-Ann, GIANNAKIDIS, Archontis, GATEHOUSE, Peter D., ENNIS, Daniel, ALIOTTA, Eric, AL-KHALIL, Majid, KELLMAN, Peter, MAZILU, Dumitru, BALABAN, Robert S., FIRMIN, David N., ARAI, Andrew E. and PENNELL, Dudley J., 2017. Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance. Journal of the American College of Cardiology. 2017. Vol. 69, no. 6, p. 661–676. DOI 10.1016/j.jacc.2016.11.051.
NOBILE, F., QUARTERONI, A. and RUIZ-BAIER, R., 2012. An active strain electromechanical model for cardiac tissue: ACTIVE STRAIN IN CARDIAC ELECTROMECHANICS. International Journal for Numerical Methods in Biomedical Engineering. 2012. Vol. 28, no. 1, p. 52–71. DOI bn6kcq.
PERTICI, Irene, BIANCHI, Giulio, BONGINI, Lorenzo, LOMBARDI, Vincenzo and BIANCO, Pasquale, 2020. A Myosin II-Based Nanomachine Devised for the Study of Ca2+-Dependent Mechanisms of Muscle Regulation. Int J Mol Sci. 2020. Vol. 21, no. 19, p. 7372. DOI 10.3390/ijms21197372.
PERTICI, Irene, BONGINI, Lorenzo, MELLI, Luca, BIANCHI, Giulio, SALVI, Luca, FALORSI, Giulia, SQUARCI, Caterina, BOZÓ, Tamás, COJOC, Dan, KELLERMAYER, Miklós S. Z., LOMBARDI, Vincenzo and BIANCO, Pasquale, 2018. A myosin II nanomachine mimicking the striated muscle. Nat Commun. 2018. Vol. 9, no. 1, p. 3532. DOI gd69s3.
PERTICI, Irene, CAREMANI, Marco and RECONDITI, Massimo, 2019. A mechanical model of the half-sarcomere which includes the contribution of titin. Journal of Muscle Research and Cell Motility. Online. 2019. Vol. 40, no. 1, p. 29–41. DOI gmtzrp. [Accessed 16 September 2021].
PIAZZESI, Gabriella, LUCII, Leonardo and LOMBARDI, Vincenzo, 2002. The size and the speed of the working stroke of muscle myosin and its dependence on the force. The Journal of Physiology. 2002. Vol. 545, no. 1, p. 145–151. DOI dtj3gc.
PIAZZESI, Gabriella, RECONDITI, Massimo, LINARI, Marco, LUCII, Leonardo, BIANCO, Pasquale, BRUNELLO, Elisabetta, DECOSTRE, Valérie, STEWART, Alex, GORE, David B., IRVING, Thomas C., IRVING, Malcolm and LOMBARDI, Vincenzo, 2007. Skeletal Muscle Performance Determined by Modulation of Number of Myosin Motors Rather Than Motor Force or Stroke Size. Cell. 2007. Vol. 131, no. 4, p. 784–795. DOI bmsfz4.
PIAZZESI, Gabriella, RECONDITI, Massimo, LINARI, Marco, LUCII, Leonardo, SUN, Yin-Biao, NARAYANAN, Theyencheri, BOESECKE, Peter, LOMBARDI, Vincenzo and IRVING, Malcolm, 2002. Mechanism of force generation by myosin heads in skeletal muscle. Nature. 2002. Vol. 415, no. 6872, p. 659–662. DOI frsg7p.
PIAZZESI, G. and LOMBARDI, V., 1995. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophysical Journal. 1995. Vol. 68, no. 5, p. 1966–1979. DOI c3nkhz.
PINZAUTI, Francesca, PERTICI, Irene, RECONDITI, Massimo, NARAYANAN, Theyencheri, STIENEN, Ger J. M., PIAZZESI, Gabriella, LOMBARDI, Vincenzo, LINARI, Marco and CAREMANI, Marco, 2018. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. The Journal of Physiology. 2018. Vol. 596, no. 13, p. 2581–2596. DOI gmtzp9.
PLAÇAIS, P.-Y., BALLAND, M., GUÉRIN, T., JOANNY, J.-F. and MARTIN, P., 2009. Spontaneous Oscillations of a Minimal Actomyosin System under Elastic Loading. Physical Review Letters. 2009. Vol. 103, no. 15, p. 158102. DOI cdjrzv.
PODOLSKY, R. J., NOLAN, A C and ZAVELER, S A, 1969. Cross-bridge properties derived from muscle isotonic velocity transients. Proceedings of the National Academy of Sciences of the United States of America. 1969. Vol. 64, no. 2, p. 504–511.
POLLARD, Thomas D., 2018. Evolution of research on cellular motility over five decades. Biophysical Reviews. 2018. Vol. 10, no. 6, p. 1503–1508. DOI gqjswp.
POWERS, Joseph D., BIANCO, Pasquale, PERTICI, Irene, RECONDITI, Massimo, LOMBARDI, Vincenzo and PIAZZESI, Gabriella, 2020. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness. The Journal of Physiology. 2020. Vol. 598, no. 2, p. 331–345. DOI gm3sgx.
POWERS, Krysta, SCHAPPACHER-TILP, Gudrun, JINHA, Azim, LEONARD, Tim, NISHIKAWA, Kiisa and HERZOG, Walter, 2014. Titin force is enhanced in actively stretched skeletal muscle. Journal of Experimental Biology. 2014. P. jeb.105361. DOI 10.1242/jeb.105361.
PRAKASH, Muthuramalingam, LEMAIRE, Thibault, CARUEL, Matthieu, LEWERENZ, Marius, DE LEEUW, Nora H., DI TOMMASO, Devis and NAILI, Salah, 2017. Anisotropic diffusion of water molecules in hydroxyapatite nanopores. Physics and Chemistry of Minerals. 2017. Vol. 44, no. 7, p. 509–519. DOI gbphjp.
PRAKASH, Muthuramalingam, LEMAIRE, Thibault, DI TOMMASO, Devis, DE LEEUW, Nora, LEWERENZ, Marius, CARUEL, Matthieu and NAILI, Salah, 2017. Transport properties of water molecules confined between hydroxyapaptite surfaces: A Molecular dynamics simulation approach. Applied Surface Science. 2017. Vol. 418, p. 296–301. DOI gmtzzr.
PROTTI, Ilaria, VAN DEN ENDEN, Antoon, VAN MIEGHEM, Nicolas M., MEUWESE, Christiaan L. and MEANI, Paolo, 2024. Looking Back, Going Forward: Understanding Cardiac Pathophysiology from PressureVolume Loops. Biology. 2024. Vol. 13, no. 1, p. 55. DOI 10.3390/biology13010055.
RABIEERAD, Mehrdad, GHASEMPOURDABAGHI, Ghazal, ZARE, Mohammad M. and AMANI-BENI, Reza, 2023. Novel Treatments of Hypertrophic Cardiomyopathy in GDMT for Heart Failure: A State-of-art Review. Current Problems in Cardiology. 2023. Vol. 48, no. 9, p. 101740. DOI 10.1016/j.cpcardiol.2023.101740.
RAYMENT, Ivan, HOLDEN, Hazel M, WHITTAKER, Michael, YOHN, Christopher B, LORENZ, Michael, HOLMES, Kenneth and MILLIGAN, Ronald A, 1993. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993. Vol. 261, no. 5117, p. 58–65. DOI cjj44w.
RAYMENT, Ivan, RYPNIEWSKI, Wojciech R, SCHMIDT-BASE, Karen, SMITH, Robert, TOMCHICK, Diana R, BENNING, Matthew M, WINKELMANN, Donald A, WESENBERG, Gary and HOLDEN, Hazel M, 1993. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science. 1993. Vol. 261, no. 5117, p. 50–58.
RECONDITI, Massimo, 2006. Recent improvements in small angle x-ray diffraction for the study of muscle physiology. Reports on Progress in Physics. Online. 2006. Vol. 69, no. 10, p. 2709–2759. DOI 10.1088/0034-4885/69/10/R01. [Accessed 16 September 2021].
RECONDITI, Massimo, CAREMANI, Marco, PINZAUTI, Francesca, POWERS, Joseph D., NARAYANAN, Theyencheri, STIENEN, Ger J. M., LINARI, Marco, LOMBARDI, Vincenzo and PIAZZESI, Gabriella, 2017. Myosin filament activation in the heart is tuned to the mechanical task. Proc Natl Acad Sci USA. 2017. Vol. 114, no. 12, p. 3240–3245. DOI f9vq5m.
RECONDITI, Massimo, LINARI, Marco, LUCII, Leonardo, STEWART, Alex, SUN, Yin-Biao, BOESECKE, Peter, NARAYANAN, Theyencheri, FISCHETTI, Robert F., IRVING, Tom, PIAZZESI, Gabriella, IRVING, Malcolm and LOMBARDI, Vincenzo, 2004. The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature. Online. 2004. Vol. 428, no. 6982, p. 578–581. DOI dfh49n. [Accessed 16 September 2021].
REGAZZONI, Francesco, DEDÈ, Luca and QUARTERONI, Alfio, 2020. Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLOS Computational Biology. 2020. Vol. 16, no. 10, p. e1008294. DOI 10.1371/journal.pcbi.1008294.
REGAZZONI, Francesco, SALVADOR, Matteo, DEDE’, Luca and QUARTERONI, Alfio, 2022. A machine learning method for real-time numerical simulations of cardiac electromechanics. Computer Methods in Applied Mechanics and Engineering. Online. 2022. Vol. 393, p. 114825. DOI 10.1016/j.cma.2022.114825. [Accessed 4 October 2023].
ROBERT-PAGANIN, Julien, PYLYPENKO, Olena, KIKUTI, Carlos, SWEENEY, H. Lee and HOUDUSSE, Anne, 2020. Force Generation by Myosin Motors: A Structural Perspective. Chem. Rev. 2020. Vol. 120, no. 1, p. 5–35. DOI gmtzrv.
ROCK, Ronald S., RICE, Sarah E., WELLS, Amber L., PURCELL, Thomas J., SPUDICH, James A. and SWEENEY, H. Lee, 2001. Myosin VI is a processive motor with a large step size. Proceedings of the National Academy of Sciences. 2001. Vol. 98, no. 24, p. 13655–13659. DOI 10.1073/pnas.191512398.
ROOTS, H., OFFER, G. W. and RANATUNGA, K. W., 2007. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: Crossbridge and non-crossbridge contributions. Journal of Muscle Research and Cell Motility. Online. 2007. Vol. 28, no. 2-3, p. 123–139. DOI d9dff9. [Accessed 16 September 2021].
ROSSIGNOL, Patrick, HERNANDEZ, Adrian F, SOLOMON, Scott D and ZANNAD, Faiez, 2019. Heart failure drug treatment. Lancet. 2019. Vol. 393, no. 10175, p. 1034–1044. DOI 10.1016/s0140-6736(18)31808-7.
ROTHMAN, James E., GRUSHIN, Kirill, BERA, Manindra and PINCET, Frederic, 2023. Turbocharging synaptic transmission. FEBS Letters. Online. 2023. Vol. 597, no. 18, p. 2233–2249. DOI 10.1002/1873-3468.14718. [Accessed 16 October 2023].
SAPER, Gadiel and HESS, Henry, 2020. Synthetic Systems Powered by Biological Molecular Motors. Chemical Reviews. 2020. Vol. 120, no. 1, p. 288–309. DOI 10.1021/acs.chemrev.9b00249.
SCHAPPACHER-TILP, Gudrun, LEONARD, Timothy, DESCH, Gertrud and HERZOG, Walter, 2015. A Novel Three-Filament Model of Force Generation in Eccentric Contraction of Skeletal Muscles. PLOS ONE. 2015. Vol. 10, no. 3, p. e0117634. DOI 10.1371/journal.pone.0117634.
SCHOENAUER, Roman, BERTONCINI, Patricia, MACHAIDZE, Gia, AEBI, Ueli, PERRIARD, Jean-Claude, HEGNER, Martin and AGARKOVA, Irina, 2005. Myomesin is a Molecular Spring with Adaptable Elasticity. J Mol Biol. 2005. Vol. 349, no. 2, p. 367–379. DOI 10.1016/j.jmb.2005.03.055.
SHESHKA, Raman and TRUSKINOVSKY, Lev, 2014. Power-stroke-driven actomyosin contractility. Phys Rev E. 2014. Vol. 89, no. 1, p. 012708–12. DOI 10.1103/physreve.89.012708.
SHIMAMOTO, Y., SUZUKI, M., MIKHAILENKO, S. V., YASUDA, K. and ISHIWATA, S., 2009. Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proceedings of the National Academy of Sciences. 2009. Vol. 106, no. 29, p. 11954–11959. DOI crcjzf.
SMITH, D. A. and GEEVES, M. A., 1995a. Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior. Biophysical Journal. 1995. Vol. 69, no. 2, p. 538–552. DOI 10.1016/S0006-3495(95)79927-1.
SMITH, D. A. and GEEVES, M. A., 1995b. Strain-dependent cross-bridge cycle for muscle. Biophys J. 1995. Vol. 69, no. 2, p. 524–537. DOI 10.1016/s0006-3495(95)79926-x.
SMITH, D. A., GEEVES, M. A., SLEEP, J. and MIJAILOVICH, S. M., 2008. Towards a Unified Theory of Muscle Contraction. I: Foundations. Ann Biomed Eng. 2008. Vol. 36, no. 10, p. 1624–1640. DOI b3tnkk.
SMITH, D. A. and MIJAILOVICH, S. M., 2008. Toward a Unified Theory of Muscle Contraction. II: Predictions with the Mean-Field Approximation. Ann Biomed Eng. 2008. Vol. 36, no. 8, p. 1353–1371. DOI ctxn66.
SOMMER, Gerhard, SCHRIEFL, Andreas J., ANDRÄ, Michaela, SACHERER, Michael, VIERTLER, Christian, WOLINSKI, Heimo and HOLZAPFEL, Gerhard A., 2015. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomaterialia. 2015. Vol. 24, p. 172–192. DOI 10.1016/j.actbio.2015.06.031.
SPUDICH, James A., RICE, Sarah E., ROCK, Ronald S., PURCELL, Thomas J. and WARRICK, Hans M., 2011. Optical Traps to Study Properties of Molecular Motors. Cold Spring Harbor Protocols. 2011. Vol. 2011, no. 11, p. pdb.top066662. DOI 10.1101/pdb.top066662.
SQUARCI, Caterina, BIANCO, Pasquale, RECONDITI, Massimo, PERTICI, Irene, CAREMANI, Marco, NARAYANAN, Theyencheri, HORVÁTH, Ádám I., MÁLNÁSI-CSIZMADIA, András, LINARI, Marco, LOMBARDI, Vincenzo and PIAZZESI, Gabriella, 2023. Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier. Proceedings of the National Academy of Sciences. Online. 2023. Vol. 120, no. 9, p. e2219346120. DOI 10.1073/pnas.2219346120. [Accessed 24 February 2023].
STOJANOVIC, Boban, SVICEVIC, Marina, KAPLAREVIC-MALISIC, Ana, GILBERT, Richard J. and MIJAILOVICH, Srboljub M., 2019. Multi-scale striated muscle contraction model linking sarcomere length-dependent cross-bridge kinetics to macroscopic deformation. J. Comput. Sci. 2019. P. 101062. DOI 10.1016/j.jocs.2019.101062.
STREETER JR., Daniel D. and BASSETT, David L., 1966. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. The Anatomical Record. 1966. Vol. 155, no. 4, p. 503–511. DOI 10.1002/ar.1091550403.
SUGIURA, Seiryo, OKADA, Jun-Ichi, WASHIO, Takumi and HISADA, Toshiaki, 2022. UT-Heart: A Finite Element Model Designed for the Multiscale and Multiphysics Integration of our Knowledge on the Human Heart. In: CORTASSA, Sonia and AON, Miguel A. (eds.), Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols. New York, NY: Springer US. p. 221–245. ISBN 978-1-07-161831-8.
SUGIURA, Seiryo, WASHIO, Takumi, HATANO, Asuka, OKADA, Junichi, WATANABE, Hiroshi and HISADA, Toshiaki, 2012. Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. Progress in Biophysics and Molecular Biology. 2012. Vol. 110, no. 2, p. 380–389. DOI 10.1016/j.pbiomolbio.2012.07.001.
SVOBODA, Karel, SCHMIDT, Christoph F., SCHNAPP, Bruce J. and BLOCK, Steven M., 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993. Vol. 365, no. 6448, p. 721–727. DOI 10.1038/365721a0.
SZNITMAN, Alain-Sol, 1991. Topics in propagation of chaos. Ecole d’été de probabilités de Saint-Flour XIX—1989. 1991. Vol. 1464, p. 165–251. DOI 10.1007/BFb0085169.
TAMBORRINI, Davide, WANG, Zhexin, WAGNER, Thorsten, TACKE, Sebastian, STABRIN, Markus, GRANGE, Michael, KHO, Ay Lin, REES, Martin, BENNETT, Pauline, GAUTEL, Mathias and RAUNSER, Stefan, 2023. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature. Online. 2023. P. 1–9. DOI 10.1038/s41586-023-06690-5.
TER KEURS, Henk E. D. J., SHINOZAKI, Tsuyoshi, ZHANG, Ying Ming, ZHANG, Mei Luo, WAKAYAMA, Yuji, SUGAI, Yoshinao, KAGAYA, Yutaka, MIURA, Masahito, BOYDEN, Penelope A., STUYVERS, Bruno D. M. and LANDESBERG, Amir, 2008. Sarcomere mechanics in uniform and non-uniform cardiac muscle: A link between pump function and arrhythmias. Progress in Biophysics and Molecular Biology. 2008. Vol. 97, no. 2-3, p. 312–331. DOI b3qk99.
TOZZINI, Valentina, 2005. Coarse-grained models for proteins. Current Opinion in Structural Biology. 2005. Vol. 15, no. 2, p. 144–150. DOI bj7js5.
TRAYANOVA, Natalia A. and RICE, John Jeremy, 2011. Cardiac Electromechanical Models: From Cell to Organ. Front. Physio. 2011. Vol. 2. DOI cdpd7s.
TUENI, Nicole, ALLAIN, Jean-Marc and GENET, Martin, 2023. On the structural origin of the anisotropy in the myocardium: Multiscale modeling and analysis. Journal of the Mechanical Behavior of Biomedical Materials. 2023. Vol. 138, p. 105600. DOI 10.1016/j.jmbbm.2022.105600.
VEIGEL, Claudia, MOLLOY, Justin E., SCHMITZ, Stephan and KENDRICK-JONES, John, 2003. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nature Cell Biology. Online. 2003. Vol. 5, no. 11, p. 980–986. DOI d7nctr. [Accessed 16 September 2021].
VELDEN, Jolanda van der, HO, Carolyn Y, TARDIFF, Jil C, OLIVOTTO, Iacopo, KNOLLMANN, Bjorn C and CARRIER, Lucie, 2015. Research priorities in sarcomeric cardiomyopathies. CARDIOVASCULAR RESEARCH. 2015. Vol. 105, no. 4, p. 449–456. DOI 10.1093/cvr/cvv019.
VILFAN, A and DUKE, T, 2003. Instabilities in the transient response of muscle. Biophysical Journal. 2003. Vol. 85, no. 2, p. 818–827.
WADMORE, Kirsty, AZAD, Amar J. and GEHMLICH, Katja, 2021. The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci. 2021. Vol. 22, no. 6, p. 3058. DOI 10.3390/ijms22063058.
WALCOTT, Sam, WARSHAW, David M. and DEBOLD, Edward P., 2012. Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements. Biophysical Journal. 2012. Vol. 103, no. 3, p. 501–510. DOI f37d3b.
WANG, H. and OSTER, G., 2002. Ratchets, power strokes, and molecular motors. Applied Physics A. 2002. Vol. 75, no. 2, p. 315–323. DOI d99s9z.
WANG, Zhexin, GRANGE, Michael, WAGNER, Thorsten, KHO, Ay Lin, GAUTEL, Mathias and RAUNSER, Stefan, 2021. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell. Online. 2021. Vol. 184, no. 8, p. 2135–2150.e13. DOI 10.1016/j.cell.2021.02.047. [Accessed 4 January 2024].
WARSHAW, Dm, 1996. The In Vitro Motility Assay: A Window Into the Myosin Molecular Motor. Physiology. 1996. Vol. 11, no. 1, p. 1–7. DOI gqjsw9.
WOODHEAD, John L. and CRAIG, Roger, 2020. The mesa trail and the interacting heads motif of myosin II. Archives of Biochemistry and Biophysics. 2020. Vol. 680, p. 108228. DOI 10.1016/j.abb.2019.108228.
WOODY, Michael S., GREENBERG, Michael J., BARUA, Bipasha, WINKELMANN, Donald A., GOLDMAN, Yale E. and OSTAP, E. Michael, 2018. Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat Commun. 2018. Vol. 9, no. 1, p. 3838. DOI gfcmsk.
WOODY, Michael S, WINKELMANN, Donald A, CAPITANIO, Marco, OSTAP, E Michael and GOLDMAN, Yale E, 2019. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife. 2019. Vol. 8, p. e49266. DOI gf9vhg.
WU, Z, HARNE, Rl and WANG, Kw, 2016. Exploring a modular adaptive metastructure concept inspired by muscle’s cross-bridge. Journal of Intelligent Material Systems and Structures. 2016. Vol. 27, no. 9, p. 1189–1202. DOI f8jtf3.
YANAGIDA, Toshio, KITAMURA, Kazuo, TANAKA, Hiroto, HIKIKOSHI IWANE, Atsuko and ESAKI, Seiji, 2000. Single molecule analysis of the actomyosin motor. Current Opinion in Cell Biology. 2000. Vol. 12, no. 1, p. 20–25. DOI cwnq9w.
YAO, Haimin and GAO, Huajian, 2006. Mechanics of robust and releasable adhesion in biology: Bottom–up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids. 2006. Vol. 54, no. 6, p. 1120–1146. DOI cp4dsc.
ZHANG, Jun, CHEN, Dechin, XIA, Yijie, HUANG, Yu-Peng, LIN, Xiaohan, HAN, Xu, NI, Ningxi, WANG, Zidong, YU, Fan, YANG, Lijiang, YANG, Yi Isaac and GAO, Yi Qin, 2023. Artificial Intelligence Enhanced Molecular Simulations. Journal of Chemical Theory and Computation. 2023. Vol. 19, no. 14, p. 4338–4350. DOI 10.1021/acs.jctc.3c00214.
Back to top