References
AGARKOVA, Irina, EHLER, Elisabeth, LANGE,
Stephan, SCHOENAUER, Roman and PERRIARD, Jean-Claude, 2003. M-band: A
safeguard for sarcomere stability? J Muscle Res Cell M. 2003.
Vol. 24, no. 2/3, p. 191–203. DOI 10.1023/a:1026094924677.
AIT MOU, Younss, LACAMPAGNE, Alain, IRVING,
Thomas, SCHEUERMANN, Valérie, BLOT, Stéphane, GHALEH, Bijan, DE TOMBE,
Pieter P. and CAZORLA, Olivier, 2018. Altered myofilament structure and
function in dogs with Duchenne muscular dystrophy
cardiomyopathy. Journal of Molecular and Cellular Cardiology.
2018. Vol. 114, p. 345–353. DOI gc4psp.
AIT-MOU, Younss, HSU, Karen, FARMAN, Gerrie P.,
KUMAR, Mohit, GREASER, Marion L., IRVING, Thomas C. and DE TOMBE, Pieter
P., 2016. Titin strain contributes to the
Frank–Starling law of the heart by structural
rearrangements of both thin- and thick-filament proteins.
Proceedings of the National Academy of Sciences. 2016.
Vol. 113, no. 8, p. 2306–2311. DOI 10.1073/pnas.1516732113.
ARBORE, Claudia, PEREGO, Laura, SERGIDES, Marios
and CAPITANIO, Marco, 2019. Probing force in living cells with optical
tweezers: From single-molecule mechanics to cell mechanotransduction.
Biophysical Reviews. 2019. Vol. 11, no. 5, p. 765–782. DOI 10.1007/s12551-019-00599-y.
AVAZMOHAMMADI, Reza, HILL, Michael R., SIMON,
Marc A., ZHANG, Will and SACKS, Michael S., 2017. A novel constitutive
model for passive right ventricular myocardium: Evidence for
myofiber–collagen fiber mechanical coupling. Biomechanics and
Modeling in Mechanobiology. 2017. Vol. 16, no. 2, p. 561–581.
DOI 10.1007/s10237-016-0837-7.
BAKER, Joseph L. and VOTH, Gregory A., 2013.
Effects of ATP and Actin-Filament Binding on
the Dynamics of the Myosin II S1 Domain.
Biophysical Journal. 2013. Vol. 105, no. 7, p. 1624–1634.
DOI f5ckxr.
BASTOS, Marcelo B, BURKHOFF, Daniel, MALY, Jiri,
DAEMEN, Joost, DEN UIL, Corstiaan A, AMELOOT, Koen, LENZEN, Mattie,
MAHFOUD, Felix, ZIJLSTRA, Felix, SCHREUDER, Jan J and VAN MIEGHEM,
Nicolas M, 2020. Invasive left ventricle pressure–volume analysis:
Overview and practical clinical implications. European Heart
Journal. 2020. Vol. 41, no. 12, p. 1286–1297. DOI 10.1093/eurheartj/ehz552.
BERA, Manindra, RADHAKRISHNAN, Abhijith, COLEMAN,
Jeff, K. SUNDARAM, R. Venkat, RAMAKRISHNAN, Sathish, PINCET, Frederic
and ROTHMAN, James E., 2023. Synaptophysin chaperones the assembly of 12
SNAREpins under each ready-release vesicle. Proceedings
of the National Academy of Sciences of the United States of
America. 2023. Vol. 120, no. 45, p. e2311484120. DOI 10.1073/pnas.2311484120.
BESTEL, J., CLÉMENT, F. and SORINE, M., 2001. A Biomechanical
Model of Muscle Contraction. In: GOOS, Gerhard,
HARTMANIS, Juris, VAN LEEUWEN, Jan, NIESSEN, Wiro J. and VIERGEVER, Max
A. (eds.), Medical Image Computing and
Computer-Assisted Intervention – MICCAI
2001. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1159–1161.
ISBN 978-3-540-42697-4 978-3-540-45468-7.
BLOCK, Steven M., GOLDSTEIN, Lawrence S. B. and
SCHNAPP, Bruce J., 1990. Bead movement by single kinesin molecules
studied with optical tweezers. Nature. 1990. Vol. 348,
no. 6299, p. 348–352. DOI 10.1038/348348a0.
BORJA DA ROCHA, Hudson and TRUSKINOVSKY, Lev,
2019. Functionality of Disorder in Muscle
Mechanics. Physical Review Letters. 2019. Vol. 122,
no. 8, p. 088103. DOI gqj7sz.
BORMUTH, Volker, BARRAL, Jérémie, JOANNY,
Jean-François., JÜLICHER, Franck. and MARTIN, Pascal, 2014. Transduction
channels’ gating can control friction on vibrating hair-cell bundles in
the ear. Proceedings of the National Academy of Sciences. 2014.
Vol. 111, no. 20, p. 7185–7190. DOI f53stg.
BRITANNICA, Encyclopædia, 2015. Striated
muscle; human biceps muscle. 2015.
BRUNELLO, Elisabetta, BIANCO, Pasquale, PIAZZESI,
Gabriella, LINARI, Marco, RECONDITI, Massimo, PANINE, Pierre, NARAYANAN,
Theyencheri, HELSBY, William I., IRVING, Malcolm and LOMBARDI, Vincenzo,
2006. Structural changes in the myosin filament and cross-bridges during
active force development in single intact frog muscle fibres: Stiffness
and X-ray diffraction measurements.
Journal of Physiology. 2006. Vol. 577, no. 3, p. 971–984.
DOI 10.1113/jphysiol.2006.115394.
BRUNELLO, Elisabetta and FUSI, Luca, 2024.
Regulating Striated Muscle Contraction: Through
Thick and Thin. Annual Review of
Physiology. 2024. Vol. 86, no. 1, p. annurev-physiol-042222-022728.
DOI 10.1146/annurev-physiol-042222-022728.
BUONFIGLIO, Valentina, PERTICI, Irene, MARCELLO,
Matteo, MOROTTI, Ilaria, CAREMANI, Marco, RECONDITI, Massimo, LINARI,
Marco, FANELLI, Duccio, LOMBARDI, Vincenzo and BIANCO, Pasquale, 2024.
Force and kinetics of fast and slow muscle myosin determined with a
synthetic sarcomere–like nanomachine. Communications Biology.
2024. Vol. 7, no. 1, p. 1–12. DOI 10.1038/s42003-024-06033-8.
CAPITANIO, Marco, CANEPARI, Monica, MAFFEI,
Manuela, BENEVENTI, Diego, MONICO, Carina, VANZI, Francesco, BOTTINELLI,
Roberto and PAVONE, Francesco Saverio, 2012. Ultrafast force-clamp
spectroscopy of single molecules reveals load dependence of myosin
working stroke. Nature Methods. 2012. Vol. 9, no. 10,
p. 1013–1019. DOI f4bt6v.
CAREMANI, Marco, MARCELLO, Matteo, MOROTTI,
Ilaria, PERTICI, Irene, SQUARCI, Caterina, RECONDITI, Massimo, BIANCO,
Pasquale, PIAZZESI, Gabriella, LOMBARDI, Vincenzo and LINARI, Marco,
2022. The force of the myosin motor sets cooperativity in thin filament
activation of skeletal muscles. Communications Biology. 2022.
Vol. 5, no. 1, p. 1–12. DOI 10.1038/s42003-022-04184-0.
CAREMANI, Marco, MELLI, Luca, DOLFI, Mario,
LOMBARDI, Vincenzo and LINARI, Marco, 2013. The working stroke of the
myosin II motor in muscle is not tightly coupled to release
of orthophosphate from its active site. J Physiol. 2013.
Vol. 591, no. 20, p. 5187–5205. DOI f5d42k.
CAREMANI, Marco, MELLI, Luca, DOLFI, Mario,
LOMBARDI, Vincenzo and LINARI, Marco, 2015. Force and number of myosin
motors during muscle shortening and the coupling with the release of the
ATP hydrolysis products: Chemo-mechanical coupling during muscle
shortening. J Physiol. 2015. Vol. 593, no. 15, p. 3313–3332.
DOI f7kxch.
CAREMANI, Marco, PINZAUTI, Francesca, RECONDITI,
Massimo, PIAZZESI, Gabriella, STIENEN, Ger J. M., LOMBARDI, Vincenzo and
LINARI, Marco, 2016. Size and speed of the working stroke of cardiac
myosin in situ. Proceedings of the National Academy of
Sciences. 2016. Vol. 113, no. 13, p. 3675–3680. DOI f8f2sh.
CARUEL, Matthieu, 2011. Mechanics of
Fast Force Recovery in striated muscles. Ecole
Polytechnique.
CARUEL, Matthieu, ALLAIN, Jean-Marc and
TRUSKINOVSKY, Lev, 2013. Muscle as a Metamaterial Operating
Near a Critical Point. Physical Review
Letters. 2013. Vol. 110, no. 24, p. 248103. DOI gmtzn5.
CARUEL, Matthieu, ALLAIN, Jean-Marc and
TRUSKINOVSKY, Lev, 2015. Mechanics of collective unfolding. Journal
of the Mechanics and Physics of Solids. 2015. Vol. 76, p. 237–259.
DOI f639qf.
CARUEL, Matthieu, CHABINIOK, Radomir, MOIREAU,
Philippe, LECARPENTIER, Yves and CHAPELLE, Dominique, 2014. Dimensional
reductions of a cardiac model for effective validation and calibration.
Biomechanics and Modeling in Mechanobiology. 2014. Vol. 13,
no. 4, p. 897–914. DOI gmtzn6.
CARUEL, Matthieu, DETREZ, Fabrice, NAVIZET,
Isabelle and MANEVY, Robin, 2022. Umbrella Sampling
for the estimation of the free energy barrier of Pi release in
Myosin. In: 27th congress of the european society of
biomechanics. Online. Porto, Portugal. 2022. Available from: https://hal-upec-upem.archives-ouvertes.fr/hal-03727763
CARUEL, Matthieu, MOIREAU, Philippe and CHAPELLE,
Dominique, 2019. Stochastic modeling of chemical–mechanical coupling in
striated muscles. Biomechanics and Modeling in Mechanobiology.
2019. Vol. 18, no. 3, p. 563–587. DOI 10.1007/s10237-018-1102-z.
CARUEL, Matthieu and PINCET, Frédéric, 2024.
Dual-Ring SNAREpin Machinery Tuning for Fast Synaptic
Vesicle Fusion. Biomolecules. 2024. Vol. 14, no. 5,
p. 600. DOI 10.3390/biom14050600.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2016.
Statistical mechanics of the Huxley-Simmons model.
Physical Review E. 2016. Vol. 93, no. 6, p. 062407. DOI gkpp6d.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2017.
Bi-stability resistant to fluctuations. Journal of the Mechanics and
Physics of Solids. 2017. Vol. 109, p. 117–141. DOI gcgxxs.
CARUEL, Matthieu and TRUSKINOVSKY, Lev, 2018.
Physics of muscle contraction. Reports on Progress in Physics.
2018. Vol. 81, no. 3, p. 036602. DOI gf8wq6.
CECCHINI, Marco, ALEXEEV, Yuri and KARPLUS,
Martin, 2010. Pi Release from Myosin: A
Simulation Analysis of Possible Pathways.
Structure. 2010. Vol. 18, no. 4, p. 458–470. DOI 10.1016/j.str.2010.01.014.
CHABINIOK, Radomir, WANG, Vicky Y.,
HADJICHARALAMBOUS, Myrianthi, ASNER, Liya, LEE, Jack, SERMESANT, Maxime,
KUHL, Ellen, YOUNG, Alistair A., MOIREAU, Philippe, NASH, Martyn P.,
CHAPELLE, Dominique and NORDSLETTEN, David A., 2016. Multiphysics and
multiscale modelling, datamodel fusion and integration of organ
physiology in the clinic. Interface Focus. 2016. Vol. 6, no. 2,
p. 20150083. DOI 10.1098/rsfs.2015.0083.
CHAINTRON, Louis-Pierre, CARUEL, Matthieu and
KIMMIG, François, 2023. Modeling actin-myosin interaction: Beyond
the Huxley–Hill Framework. MathematicS In Action. 2023.
Vol. 12, no. 1, p. 191–226. DOI 10.5802/msia.38.
CHAINTRON, Louis-Pierre and DIEZ, Antoine, 2022a.
Propagation of chaos: A review of models, methods and applications. I.
Models and methods. Kinetic and Related Models. 2022. Vol. 15,
no. 6, p. 895–1015. DOI 10.3934/krm.2022017.
CHAINTRON, Louis-Pierre and DIEZ, Antoine, 2022b.
Propagation of chaos: A review of models, methods and applications. II.
applications. Kinetic and Related Models. 2022. Vol. 15, no. 6,
p. 1017–1173. DOI 10.3934/krm.2022018.
CHAINTRON, Louis-Pierre, KIMMIG, François,
CARUEL, Matthieu and MOIREAU, Philippe, 2023. A jump-diffusion
stochastic formalism for muscle contraction models at multiple
timescales. Journal of Applied Physics. 2023. Vol. 134, no. 19,
p. 194901. DOI 10.1063/5.0158191.
CHANGEUX, Jean-Pierre, THIÉRY, Jean, TUNG, Yvonne
and KITTEL, C., 1967. On the Cooperativity of
Biological Membranes. Proceedings of the National
Academy of Sciences. 1967. Vol. 57, no. 2, p. 335–341. DOI brqnsp.
CHAPELLE, Dominique, TALLEC, Patrick Le, MOIREAU,
Philippe and SORINE, M., 2012. An energy-preserving muscle tissue model:
Formulation and compatible discretizations. International Journal
For Multiscale Computational Engineering. 2012. Vol. 10, no. 2,
p. 189–211.
CHENG, Yu-Shu, LEITE, Felipe de Souza and
RASSIER, Dilson E., 2020. The load dependence and the force-velocity
relation in intact myosin filaments from skeletal and smooth muscles.
Am J Physiol-cell Ph. 2020. Vol. 318, no. 1, p. C103–C110.
DOI 10.1152/ajpcell.00339.2019.
COLORADO-CERVANTES, J. I., NARDINOCCHI, P.,
PIRAS, P., SANSALONE, V., TERESI, L., TORROMEO, C. and PUDDU, P. E.,
2022. Patient-specific modeling of left ventricle mechanics. Acta
Mechanica Sinica. 2022. Vol. 38, no. 1, p. 621211. DOI 10.1007/s10409-021-09041-0.
CRAIG, Roger W and PADRÓN, Raúl, 2004. Molecular
Structure of the Sarcomere. In:
Myology. 3. The McGraw-Hill Companies, Inc.
p. 129–144. ISBN 0-07-137180-X.
DAMON, Bruce M., FROELING, Martijn, BUCK, Amanda
K. W., OUDEMAN, Jos, DING, Zhaohua, NEDERVEEN, Aart J., BUSH, Emily C.
and STRIJKERS, Gustav J., 2017. Skeletal muscle diffusion
tensor-MRI fiber tracking: Rationale, data acquisition and
analysis methods, applications and future directions. NMR in
Biomedicine. 2017. Vol. 30, no. 3, p. e3563. DOI 10.1002/nbm.3563.
DAWSON, Donald A and GÄRTNER, J, 1986. Large
deviations and tunnelling for particle systems with mean field
interaction. CR Math. Rep. Acad. Sci. Canada. Online. 1986.
Vol. 8, no. 6, p. 387–392. Available from: https://mathreports.ca/article/large-deviations-and-tunnelling-for-particle-systems-with-mean-field-interaction/
DAY, Sharlene M., TARDIFF, Jil C. and OSTAP, E.
Michael, 2022. Myosin modulators: Emerging approaches for the treatment
of cardiomyopathies and heart failure. The Journal of Clinical
Investigation. 2022. Vol. 132, no. 5. DOI 10.1172/JCI148557.
DE TOMBE, P P and TER KEURS, H E, 1990. Force and
velocity of sarcomere shortening in trabeculae from rat heart.
Effects of temperature. Circulation Research.
1990. Vol. 66, no. 5, p. 1239–1254. DOI gmtztb.
DOBESH, David P, KONHILAS, John P and TOMBE,
Pieter P de, 2002. Cooperative activation in cardiac muscle: Impact of
sarcomere length. American Journal of Physiology-Heart and
Circulatory Physiology. 2002. Vol. 282, no. 3, p. H1055–H1062.
DOI 10.1152/ajpheart.00667.2001.
DOKOS, Socrates, SMAILL, Bruce H., YOUNG,
Alistair A. and LEGRICE, Ian J., 2002. Shear properties of passive
ventricular myocardium. American Journal of Physiology-Heart and
Circulatory Physiology. 2002. Vol. 283, no. 6, p. H2650–H2659.
DOI 10.1152/ajpheart.00111.2002.
DOMINGUEZ, Roberto, FREYZON, Yelena, TRYBUS,
Kathleen M. and COHEN, Carolyn, 1998. Crystal Structure of
a Vertebrate Smooth Muscle Myosin Motor Domain and
Its Complex with the Essential Light Chain:
Visualization of the Pre–Power Stroke
State. Cell. Online. 1998. Vol. 94, no. 5, p. 559–571.
DOI 10.1016/S0092-8674(00)81598-6.
[Accessed 8 November 2023].
DUKE, T. A. J., 1999. Molecular model of muscle
contraction. Proceedings of the National Academy of Sciences.
1999. Vol. 96, no. 6, p. 2770–2775. DOI d4xwdb.
EISENBERG, Evan and HILL, Terrell L., 1979. A
cross-bridge model of muscle contraction. Progress in Biophysics and
Molecular Biology. 1979. Vol. 33, p. 55–82. DOI bdpfkn.
ERDMANN, T. and SCHWARZ, U. S., 2007. Impact of
receptor-ligand distance on adhesion cluster stability. Eur. Phys.
J. E. 2007. Vol. 22, no. 2, p. 123–137. DOI cvn2q5.
FILIPOVIC, Nenad, SUSTERSIC, Tijana, MILOSEVIC,
Miljan, MILICEVIC, Bogdan, SIMIC, Vladimir, PRODANOVIC, Momcilo,
MIJAILOVIC, Srboljub and KOJIC, Milos, 2022. SILICOFCM
platform, multiscale modeling of left ventricle from echocardiographic
images and drug influence for cardiomyopathy disease. Computer
Methods and Programs in Biomedicine. 2022. Vol. 227, p. 107194.
DOI 10.1016/j.cmpb.2022.107194.
FINER, Jeffrey T., SIMMONS, Robert M. and
SPUDICH, James A., 1994. Single myosin molecule mechanics: Piconewton
forces and nanometre steps. Nature. 1994. Vol. 368, no. 6467,
p. 113–119. DOI 10.1038/368113a0.
FISCHER, S., WINDSHUGEL, B., HORAK, D., HOLMES,
K. C. and SMITH, J. C., 2005. Structural mechanism of the recovery
stroke in the Myosin molecular motor. Proceedings of
the National Academy of Sciences. 2005. Vol. 102, no. 19,
p. 6873–6878. DOI d3s2fb.
FOËX, P. and LEONE, B. J., 1994. Pressure-volume
loops: A dynamic approach to the assessment of ventricular
function. Journal of Cardiothoracic and Vascular Anesthesia.
1994. Vol. 8, no. 1, p. 84–96. DOI 10.1016/1053-0770(94)90020-5.
FORD, L E, HUXLEY, A F and SIMMONS, R M, 1981.
The relation between stiffness and filament overlap in stimulated frog
muscle fibres. The Journal of Physiology. Online. 1981.
Vol. 311, no. 1, p. 219–249. DOI gmjmmd. [Accessed 16 September 2021].
FRANK, Derk and FREY, Norbert, 2011. Cardiac
Z-disc Signaling Network. Journal of
Biological Chemistry. Online. 2011. Vol. 286, no. 12, p. 9897–9904.
DOI 10.1074/jbc.R110.174268.
[Accessed 3 January 2024].
GAO, H, QIAN, J and CHEN, B, 2011. Probing
mechanical principles of focal contacts in cell-matrix adhesion with a
coupled stochastic-elastic modelling framework. Journal of the Royal
Society Interface. 2011. Vol. 8, no. 62, p. 1217–1232. DOI 10.1098/rsif.2011.0157.
GEORGE, Melvin, RAJARAM, Muthukumar, SHANMUGAM,
Elangovan and VIJAYAKUMAR, Thangavel Mahalingam, 2014. Novel drug
targets in clinical development for heart failure. Eur J Clin
Pharmacol. 2014. Vol. 70, no. 7, p. 765–74. DOI 10.1007/s00228-014-1671-4.
GERULL, Brenda, GRAMLICH, Michael, ATHERTON,
John, MCNABB, Mark, TROMBITÁS, Karoly, SASSE-KLAASSEN, Sabine, SEIDMAN,
J. G., SEIDMAN, Christine, GRANZIER, Henk, LABEIT, Siegfried, FRENNEAUX,
Michael and THIERFELDER, Ludwig, 2002. Mutations of TTN,
encoding the giant muscle filament titin, cause familial dilated
cardiomyopathy. Nat Genet. 2002. Vol. 30, no. 2, p. 201–204.
DOI 10.1038/ng815.
GÖKTEPE, Serdar, MENZEL, Andreas and KUHL, Ellen,
2014. The generalized Hill model: A kinematic
approach towards active muscle contraction. Journal of the Mechanics
and Physics of Solids. 2014. Vol. 72, p. 20–39. DOI f24qpv.
GRANZIER, Henk, WU, Yiming, SIEGFRIED, Labeit and
LEWINTER, Martin, 2005. Titin: Physiological Function and
Role in Cardiomyopathy and
Failure. Heart Fail Rev. 2005. Vol. 10, no. 3,
p. 211–223. DOI bqqzhf.
GUÉRIN, Thomas, PROST, Jacques, MARTIN, Pascal
and JOANNY, Jean-François, 2010. Coordination and collective properties
of molecular motors: theory. Current Opinion in Cell Biology.
2010. Vol. 22, no. 1, p. 14–20. DOI c4hrnm.
GUÉRIN, Thomas, PROST, J. and JOANNY, J.-F.,
2010. Dynamic Instabilities in Assemblies of
Molecular Motors with Finite Stiffness.
Physical Review Letters. Online. 2010. Vol. 104, no. 24,
p. 248102. DOI cmftsw.
[Accessed 16 September 2021].
GUÉRIN, T., PROST, J. and JOANNY, J. -F., 2011.
Dynamical behavior of molecular motor assemblies in the rigid and
crossbridge models. Eur. Phys. J. E. 2011. Vol. 34, no. 6,
p. 60. DOI dwphkc.
GUREL, Pinar S, KIM, Laura Y, RUIJGROK, Paul V,
OMABEGHO, Tosan, BRYANT, Zev and ALUSHIN, Gregory M, 2017.
Cryo-EM structures reveal specialization at the myosin
VI-actin interface and a mechanism of force
sensitivity. eLife. 2017. Vol. 6, p. e31125. DOI 10.7554/eLife.31125.
HARNE, R L, WU, Z and WANG, K W, 2015. Mechanical
Properties Adaptivity by the Design and
Exploitation of Metastable States in a
Modular Metastructure. ASME 2015 Conference on Smart
Materials, Adaptive Structures and Intelligent Systems. 2015.
P. V001T01A014–V001T01A014. DOI 10.1115/smasis2015-9018.
HARNE, R. L., WU, Z. and WANG, K. W., 2016.
Designing and Harnessing the Metastable States
of a Modular Metastructure for Programmable
Mechanical Properties Adaptation. Journal of Mechanical
Design. 2016. Vol. 138, no. 2, p. 021402. DOI gfw466.
HELING, L. W. H. J., GEEVES, M. A. and KAD, N.
M., 2020. MyBP-C: One protein to govern them all.
Journal of Muscle Research and Cell Motility. Online. 2020.
Vol. 41, no. 1, p. 91–101. DOI 10.1007/s10974-019-09567-1.
[Accessed 3 January 2024].
HENDERSON, Christine A., GOMEZ, Christopher G.,
NOVAK, Stefanie M., MI-MI, Lei and GREGORIO, Carol C., 2017. Overview of the Muscle
Cytoskeleton. In: Comprehensive
Physiology. Online. John Wiley & Sons,
Ltd. p. 891–944. ISBN 978-0-470-65071-4.
[Accessed 3 January 2024].
HERWIG, Melissa, KOLIJN, Detmar, LÓDI, Mária,
HÖLPER, Soraya, KOVÁCS, Árpád, PAPP, Zoltán, JAQUET, Kornelia,
HALDENWANG, Peter, REMEDIOS, Cris Dos, REUSCH, Peter H., MÜGGE, Andreas,
KRÜGER, Marcus, FIELITZ, Jens, LINKE, Wolfgang A. and HAMDANI, Nazha,
2020. Modulation of Titin-Based Stiffness in
Hypertrophic Cardiomyopathy via Protein Kinase
D. Front Physiol. 2020. Vol. 11, p. 240. DOI 10.3389/fphys.2020.00240.
HERZOG, Walter and SCHAPPACHER-TILP, Gudrun,
2023. Molecular mechanisms of muscle contraction: A
historical perspective. Journal of Biomechanics. Online. 2023.
Vol. 155, p. 111659. DOI 10.1016/j.jbiomech.2023.111659.
[Accessed 11 October 2023].
HILL, Terrell L., 1974. Theoretical formalism for
the sliding filament model of contraction of striated muscle Part
I. Prog Biophys Mol Bio. 1974. Vol. 28, p. 267–340.
DOI cwsfsx.
HILL, Terrell L., 1976. Theoretical formalism for
the sliding filament model of contraction of striated muscle part
II. Progress in Biophysics and Molecular Biology.
1976. Vol. 29, p. 105–159. DOI b4z7px.
HINSON, John T, CHOPRA, Anant, NAFISSI, Navid,
POLACHECK, William J, BENSON, Craig C, SWIST, Sandra, GORHAM, Joshua,
YANG, Luhan, SCHAFER, Sebastian, SHENG, Calvin C, HAGHIGHI, Alireza,
HOMSY, Jason, HUBNER, Norbert, CHURCH, George, COOK, Stuart A, LINKE,
Wolfgang A, CHEN, Christopher S, SEIDMAN, J G and SEIDMAN, Christine E,
2015. Titin mutations in iPS cells define
sarcomere insufficiency as a cause of dilated cardiomyopathy.
Science. 2015. Vol. 349, no. 6251, p. 982–986. DOI f7qdj4.
HOLZBAUR, Erika LF and GOLDMAN, Yale E, 2010.
Coordination of molecular motors: From in vitro assays to intracellular
dynamics. Current Opinion in Cell Biology. 2010. Vol. 22,
no. 1, p. 4–13. DOI djb3hh.
HOSHINO, T, FUJIWARA, H, KAWAI, C and HAMASHIMA,
Y, 1983. Myocardial fiber diameter and regional distribution in the
ventricular wall of normal adult hearts, hypertensive hearts and hearts
with hypertrophic cardiomyopathy. Circulation. 1983. Vol. 67,
no. 5, p. 1109–1116. DOI 10.1161/01.CIR.67.5.1109.
HOUDUSSE, Anne M., AUGUIN, Daniel,
ROBERT-PAGANIN, Julien, KIKUTI, Carlos and CANON, Louise, 2024. Small
molecules modulating force production: A promising strategy
to treat myosin-associated diseases. Biophysical Journal. 2024.
Vol. 123, no. 3, p. 466a. DOI 10.1016/j.bpj.2023.11.2821.
HOUDUSSE, Anne and SWEENEY, H. Lee, 2016. How
Myosin Generates Force on Actin Filaments.
Trends in Biochemical Sciences. 2016. Vol. 41, no. 12,
p. 989–997. DOI f9c8jf.
HUXLEY, Aandrew F and SIMMONS, Robert M, 1971.
Proposed mechanism of force generation in striated muscle.
Nature. 1971. Vol. 233, no. 5321, p. 533–538.
HUXLEY, Andrew F, 1957. Muscle structure and
theories of contraction. Progress in biophysics and biophysical
chemistry. 1957. Vol. 7, p. 255–318.
HUXLEY, Hugh. E., 1957. The Double
array of filaments in cross-striated muscle. The Journal of
Biophysical and Biochemical Cytology. Online. 1957. Vol. 3, no. 5,
p. 631–648. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224118/
JANSSEN, P. M. and HUNTER, W. C., 1995. Force,
not sarcomere length, correlates with prolongation of isosarcometric
contraction. American Journal of Physiology-Heart and Circulatory
Physiology. 1995. Vol. 269, no. 2, p. H676–H685. DOI gmtz3f.
JÜLICHER, F and PROST, J, 1995. Cooperative
molecular motors. Physical Review Letters. 1995. Vol. 75,
no. 13, p. 2618–2621.
JÜLICHER, F and PROST, J, 1997. Spontaneous
oscillations of collective molecular motors. Physical Review
Letters. 1997. Vol. 78, no. 23, p. 4510–4513. DOI 10.1103/physrevlett.78.4510.
JÜLICHER, Frank, AJDARI, Armand and PROST,
Jacques, 1997. Modeling molecular motors. Reviews of Modern
Physics. 1997. Vol. 69, no. 4, p. 1269–1282. DOI dvk9kt.
KALGANOV, Albert, SHALABI, Nabil, ZITOUNI,
Nedjma, KACHMAR, Linda Hussein, LAUZON, Anne-Marie and RASSIER, Dilson
E., 2013. Forces measured with micro-fabricated cantilevers during
actomyosin interactions produced by filaments containing different
myosin isoforms and loop 1 structures. Biochimica et Biophysica Acta
(BBA) - General Subjects. 2013. Vol. 1830, no. 3, p. 2710–2719.
DOI 10.1016/j.bbagen.2012.11.022.
KAYA, Motoshi, TANI, Yoshiaki, WASHIO, Takumi,
HISADA, Toshiaki and HIGUCHI, Hideo, 2017. Coordinated force generation
of skeletal myosins in myofilaments through motor coupling. Nat
Commun. 2017. Vol. 8, no. 1, p. 16036. DOI gbkxhq.
KENTISH, J C, TER KEURS, H E, RICCIARDI, L, BUCX,
J J and NOBLE, M I, 1986. Comparison between the sarcomere length-force
relations of intact and skinned trabeculae from rat right ventricle.
Influence of calcium concentrations on these relations.
Circulation Research. 1986. Vol. 58, no. 6, p. 755–768. DOI 10.1161/01.res.58.6.755.
KIDAMBI, Narayanan, HARNE, Ryan L and WANG, K W,
2017. Energy capture and storage in asymmetrically multistable modular
structures inspired by skeletal muscle. Smart Mater. Struct.
2017. Vol. 26, no. 8, p. 085011. DOI gmc7xc.
KIMMIG, François, 2019.
Modélisation multi-Échelles de la
contraction musculaire: De la dynamique stochastique des
moteurs moléculaires à la
mécanique des milieux continus.
KIMMIG, François and CARUEL, Matthieu, 2020.
Hierarchical modeling of force generation in cardiac muscle.
Biomechanics and Modeling in Mechanobiology. 2020. Vol. 19,
no. 6, p. 2567–2601. DOI 10.1007/s10237-020-01357-w.
KIMMIG, François, CARUEL, Matthieu and CHAPELLE,
Dominique, 2022. Varying thin filament activation in the framework of
the Huxley’57 model. International Journal for
Numerical Methods in Biomedical Engineering. 2022. Vol. 38, no. 12,
p. e3655. DOI 10.1002/cnm.3655.
KIMMIG, François, CHAPELLE, Dominique and
MOIREAU, Philippe, 2019. Thermodynamic properties of muscle contraction
models and associated discrete-time principles. Advanced Modeling
and Simulation in Engineering Sciences. 2019. Vol. 6, no. 1, p. 6.
DOI gmtzrb.
KIMMIG, François, MOIREAU, Philippe and CHAPELLE,
Dominique, 2021. Hierarchical modeling of length-dependent force
generation in cardiac muscles and associated
thermodynamically-consistent numerical schemes. Comput Mech.
2021. P. 1–36. DOI 10.1007/s00466-021-02051-z.
LANGE, Stephan, PINOTSIS, Nikos, AGARKOVA, Irina
and EHLER, Elisabeth, 2019. The M-band:
The underestimated part of the sarcomere. Biochimica Et
Biophysica Acta Bba - Mol Cell Res. 2019. Vol. 1867, p. 118440.
DOI 10.1016/j.bbamcr.2019.02.003.
LEGRICE, I. J., SMAILL, B. H., CHAI, L. Z.,
EDGAR, S. G., GAVIN, J. B. and HUNTER, P. J., 1995. Laminar structure of
the heart: Ventricular myocyte arrangement and connective tissue
architecture in the dog. American Journal of Physiology-Heart and
Circulatory Physiology. 1995. Vol. 269, no. 2, p. H571–H582. DOI 10.1152/ajpheart.1995.269.2.H571.
LEITE, Felipe de Souza and RASSIER, Dilson E.,
2020. Sarcomere length non-uniformity and force regulation in myofibrils
and sarcomeres. Biophys J. 2020. Vol. 119, no. 12,
p. 2372–2377. DOI 10.1016/j.bpj.2020.11.005.
LI, Jia, SUNDNES, Joakim, HOU, Yufeng, LAASMAA,
Martin, RUUD, Marianne, UNGER, Andreas, KOLSTAD, Terje R., FRISK,
Michael, NORSENG, Per Andreas, YANG, Limin, SETTERBERG, Ingunn E.,
ALVES, Estela S., KALAKOUTIS, Michaeljohn, SEJERSTED, Ole M., LANNER,
Johanna T., LINKE, Wolfgang A., LUNDE, Ida G., DE TOMBE, Pieter P. and
LOUCH, William E., 2023. Stretch Harmonizes Sarcomere Strain
Across the Cardiomyocyte. Circulation
Research. 2023. Vol. 133, no. 3, p. 255–270. DOI 10.1161/CIRCRESAHA.123.322588.
LINARI, Marco, BRUNELLO, Elisabetta, RECONDITI,
Massimo, FUSI, Luca, CAREMANI, Marco, NARAYANAN, Theyencheri, PIAZZESI,
Gabriella, LOMBARDI, Vincenzo and IRVING, Malcolm, 2015. Force
generation by skeletal muscle is controlled by mechanosensing in myosin
filaments. Nature. 2015. Vol. 528, no. 7581, p. 276–279. DOI 10.1038/nature15727.
LINARI, Marco, DOBBIE, Ian, RECONDITI, Massimo,
KOUBASSOVA, Natalia, IRVING, Malcolm, PIAZZESI, Gabriella and LOMBARDI,
Vincenzo, 1998. The Stiffness of Skeletal
Muscle in Isometric Contraction and
Rigor: The Fraction of Myosin Heads
Bound to Actin. Biophysical Journal.
Online. 1998. Vol. 74, no. 5, p. 2459–2473. DOI bkzvq6. [Accessed 16 September 2021].
LINKE, Wolfgang A., 2023. Stretching the story of
titin and muscle function. Journal of Biomechanics. 2023.
Vol. 152, p. 111553. DOI 10.1016/j.jbiomech.2023.111553.
LINKE, Wolfgang A. and KRÜGER, Martina, 2010. The
Giant Protein Titin as an Integrator of
Myocyte Signaling Pathways. Physiology. 2010.
Vol. 25, no. 3, p. 186–198. DOI d6nqvw.
LLINAS, Paola, ISABET, Tatiana, SONG, Lin,
ROPARS, Virginie, ZONG, Bin, BENISTY, Hannah, SIRIGU, Serena, MORRIS,
Carl, KIKUTI, Carlos, SAFER, Dan, SWEENEY, H. Lee and HOUDUSSE, Anne,
2015. How Actin Initiates the Motor Activity
of Myosin. Developmental Cell. 2015. Vol. 33,
no. 4, p. 401–412. DOI f7cvg8.
LOOKIN, Oleg, KHOKHLOVA, Anastasia and CAZORLA,
Olivier, 2022. Contractile State Dependent Sarcomere Length
Variability in Isolated Guinea-Pig Cardiomyocytes.
Frontiers in Physiology. 2022. Vol. 13. DOI 10.3389/fphys.2022.857471.
LYMN, R. W. and TAYLOR, E. W., 1971. Mechanism of
Adenosine Triphosphate Hydrolysis by Actomyosin. Biochemistry.
1971. Vol. 10, no. 25, p. 4617–4624. DOI dvbcct.
MA, Hong, XING, Fei, YU, Peiyun, XU, Jiawei, WU,
Xinyu, LUO, Rong, XIANG, Zhou, MARIA ROMMENS, Pol, DUAN, Xin and RITZ,
Ulrike, 2023. Integrated design and fabrication strategies based on
bioprinting for skeletal muscle regeneration: Current
status and future perspectives. Materials & Design. 2023.
Vol. 225, p. 111591. DOI 10.1016/j.matdes.2023.111591.
MAGNASCO, Marcelo O., 1993. Forced thermal
ratchets. Physical Review Letters. 1993. Vol. 71, no. 10,
p. 1477–1481. DOI dtk497.
MALIK, F. I., HARTMAN, J. J., ELIAS, K. A.,
MORGAN, B. P., RODRIGUEZ, H., BREJC, K., ANDERSON, R. L., SUEOKA, S. H.,
LEE, K. H., FINER, J. T., SAKOWICZ, R., BALIGA, R., COX, D. R., GARARD,
M., GODINEZ, G., KAWAS, R., KRAYNACK, E., LENZI, D., LU, P. P., MUCI,
A., NIU, C., QIAN, X., PIERCE, D. W., POKROVSKII, M., SUEHIRO, I.,
SYLVESTER, S., TOCHIMOTO, T., VALDEZ, C., WANG, W., KATORI, T., KASS, D.
A., SHEN, Y.-T., VATNER, S. F. and MORGANS, D. J., 2011. Cardiac
Myosin Activation: A Potential Therapeutic
Approach for Systolic Heart Failure.
Science. 2011. Vol. 331, no. 6023, p. 1439–1443. DOI d5qnnp.
MANCA, Fabio, PINCET, Frederic, TRUSKINOVSKY,
Lev, ROTHMAN, James E., FORET, Lionel and CARUEL, Matthieu, 2019.
SNARE machinery is optimized for ultrafast fusion.
Proceedings of the National Academy of Sciences. 2019.
Vol. 116, no. 7, p. 2435–2442. DOI gmn5g3.
MANEVY, Robin, 2023.
Caractérisation du départ du phosphate de
la myosine VI par simulations de dynamique
moléculaire. Université Gustave
Eiffet.
MANEVY, Robin, CARUEL, Matthieu, DETREZ, Fabrice
and NAVIZET, 2021. Identification of Free Energy
Barriers Associated With Transition In Myosin cycle Using Umbrella
Sampling. In: Workshop Les Houches Protein
Dynamics. Congrès virtuel. 2021.
MANEVY, Robin, DETREZ, Fabrice, NAVIZET, Isabelle
and CARUEL, Matthieu, 2021. Étude mécanique
d’une protéine du muscle. In: Journée Thématique Biomécanique
et Biomatériaux F2M. online.
2021.
MANGANOTTI, Jessica, CAFORIO, Federica, KIMMIG,
François, MOIREAU, Philippe and IMPERIALE, Sebastien, 2021. Coupling
reduced-order blood flow and cardiac models through energy-consistent
strategies: Modeling and discretization. Advanced Modeling and
Simulation in Engineering Sciences. Online. 2021. Vol. 8, no. 1,
p. 21. DOI 10.1186/s40323-021-00206-4.
[Accessed 30 May 2024].
MÅNSSON, Alf, 2010. Actomyosin-ADP
States, Interhead Cooperativity, and the
Force-Velocity Relation of Skeletal Muscle.
Biophysical Journal. 2010. Vol. 98, no. 7, p. 1237–1246. DOI crwdh6.
MÅNSSON, Alf, 2016. Actomyosin based contraction:
One mechanokinetic model from single molecules to muscle? J Muscle
Res Cell Motil. 2016. Vol. 37, no. 6, p. 181–194. DOI f9sbhb.
MÅNSSON, Alf, 2019. Comparing models with one
versus multiple myosin-binding sites per actin target zone:
The power of simplicity. Journal of General
Physiology. 2019. Vol. 151, no. 4, p. 578–592. DOI 10.1085/jgp.201812301.
MÅNSSON, Alf, 2020. Hypothesis: Single
Actomyosin Properties Account for Ensemble Behavior
in Active Muscle Shortening and Isometric
Contraction. Int J Mol Sci. 2020. Vol. 21, no. 21,
p. 8399. DOI 10.3390/ijms21218399.
MARCUCCI, L. and TRUSKINOVSKY, L., 2010.
Mechanics of the power stroke in myosin II. Physical
Review E. 2010. Vol. 81, no. 5, p. 051915. DOI c9xrzx.
MARON, Barry J and MARON, Martin S, 2013.
Hypertrophic cardiomyopathy. The Lancet. 2013. Vol. 381,
no. 9862, p. 242–255. DOI 10.1016/s0140-6736(12)60397-3.
MARSTON, Steven, 2022. Force Measurements
From Myofibril to Filament. Frontiers in
Physiology. 2022. Vol. 12, p. 817036. DOI 10.3389/fphys.2021.817036.
MCKILLOP, D. F. and GEEVES, M. A., 1993.
Regulation of the interaction between actin and myosin subfragment 1:
Evidence for three states of the thin filament. Biophysical
Journal. 1993. Vol. 65, no. 2, p. 693–701. DOI 10.1016/S0006-3495(93)81110-X.
MÉNÉTREY, Julie, BAHLOUL, Amel, WELLS, Amber L.,
YENGO, Christopher M., MORRIS, Carl A., SWEENEY, H. Lee and HOUDUSSE,
Anne, 2005. The structure of the myosin VI motor reveals
the mechanism of directionality reversal. Nature. 2005.
Vol. 435, no. 7043, p. 779–785. DOI 10.1038/nature03592.
MILIĆEVIĆ, Bogdan, IVANOVIĆ, Miloš, STOJANOVIĆ,
Boban, MILOŠEVIĆ, Miljan, KOJIĆ, Miloš and FILIPOVIĆ, Nenad, 2022.
Huxley muscle model surrogates for high-speed multi-scale simulations of
cardiac contraction. Computers in Biology and Medicine. Online.
2022. Vol. 149, p. 105963. DOI 10.1016/j.compbiomed.2022.105963.
[Accessed 4 October 2023].
MOBLEY, Bert A and EISENBERG, Brenda R, 1975.
Sizes of components in frog skeletal muscle measured by methods of
stereology. Journal of General Physiology. 1975. Vol. 66,
no. 1, p. 31–45. DOI cm8s33.
MOLLOY, Justin E, BURNS, Julie E, SPARROW, John
C, TREGEAR, Richard T, KENDRICK-JONES, John and WHITE, David C S, 1995.
Single-Molecule Mechanics of Heavy Meromyosin
and Si Interacting with Rabbit or
Drosophila Actins Using Optical Tweezers. Biophysical
Journal. 1995. Vol. 68, p. 6.
MONOD, J, WYMAN, J and CHANGEUX, J P, 1965. On
The Nature Of Allosteric Transitions: A Plausible
Model. J. Mol. Biol. 1965. Vol. 12, p. 88–118.
MOO, Eng Kuan and HERZOG, Walter, 2018. Single
sarcomere contraction dynamics in a whole muscle. Scientific
Reports. Online. 2018. Vol. 8, no. 1, 1, p. 15235. DOI 10.1038/s41598-018-33658-7.
[Accessed 4 October 2023].
MORITA, Hiroyuki, REHM, Heidi L, MENESSES,
Andres, MCDONOUGH, Barbara, ROBERTS, Amy E, KUCHERLAPATI, Raju, TOWBIN,
Jeffrey A, SEIDMAN, J G and SEIDMAN, Christine E, 2008. Shared
Genetic Causes of Cardiac Hypertrophy in
Children and Adults. New England Journal
of Medicine. 2008. Vol. 358, no. 18, p. 1899–1908. DOI 10.1056/nejmoa075463.
NADKARNI, Neel, ARRIETA, Andres F., CHONG,
Christopher, KOCHMANN, Dennis M. and DARAIO, Chiara, 2016.
Unidirectional Transition Waves in Bistable
Lattices. Physical Review Letters. 2016. Vol. 116,
no. 24, p. 244501. DOI gf2mms.
NAG, Suman, GOLLAPUDI, Sampath K., DEL RIO,
Carlos L., SPUDICH, James A. and MCDOWELL, Robert, 2023. Mavacamten, a
precision medicine for hypertrophic cardiomyopathy: From a
motor protein to patients. Science Advances. 2023. Vol. 9,
no. 30, p. eabo7622. DOI 10.1126/sciadv.abo7622.
NARDINOCCHI, Paola and TERESI, Luciano, 2007. On
the Active Response of Soft Living Tissues.
Journal of Elasticity. 2007. Vol. 88, no. 1, p. 27–39. DOI 10.1007/s10659-007-9111-7.
NIELLES-VALLESPIN, Sonia, KHALIQUE, Zohya,
FERREIRA, Pedro F., DE SILVA, Ranil, SCOTT, Andrew D., KILNER, Philip,
MCGILL, Laura-Ann, GIANNAKIDIS, Archontis, GATEHOUSE, Peter D., ENNIS,
Daniel, ALIOTTA, Eric, AL-KHALIL, Majid, KELLMAN, Peter, MAZILU,
Dumitru, BALABAN, Robert S., FIRMIN, David N., ARAI, Andrew E. and
PENNELL, Dudley J., 2017. Assessment of Myocardial Microstructural
Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic
Resonance. Journal of the American College of
Cardiology. 2017. Vol. 69, no. 6, p. 661–676. DOI 10.1016/j.jacc.2016.11.051.
NOBILE, F., QUARTERONI, A. and RUIZ-BAIER, R.,
2012. An active strain electromechanical model for cardiac tissue:
ACTIVE STRAIN IN CARDIAC ELECTROMECHANICS.
International Journal for Numerical Methods in Biomedical
Engineering. 2012. Vol. 28, no. 1, p. 52–71. DOI bn6kcq.
PERTICI, Irene, BIANCHI, Giulio, BONGINI,
Lorenzo, LOMBARDI, Vincenzo and BIANCO, Pasquale, 2020. A Myosin
II-Based Nanomachine Devised for the Study of
Ca2+-Dependent Mechanisms of Muscle
Regulation. Int J Mol Sci. 2020. Vol. 21, no. 19,
p. 7372. DOI 10.3390/ijms21197372.
PERTICI, Irene, BONGINI, Lorenzo, MELLI, Luca,
BIANCHI, Giulio, SALVI, Luca, FALORSI, Giulia, SQUARCI, Caterina, BOZÓ,
Tamás, COJOC, Dan, KELLERMAYER, Miklós S. Z., LOMBARDI, Vincenzo and
BIANCO, Pasquale, 2018. A myosin II nanomachine mimicking
the striated muscle. Nat Commun. 2018. Vol. 9, no. 1, p. 3532.
DOI gd69s3.
PERTICI, Irene, CAREMANI, Marco and RECONDITI,
Massimo, 2019. A mechanical model of the half-sarcomere which includes
the contribution of titin. Journal of Muscle Research and Cell
Motility. Online. 2019. Vol. 40, no. 1, p. 29–41. DOI gmtzrp. [Accessed 16 September 2021].
PIAZZESI, Gabriella, LUCII, Leonardo and
LOMBARDI, Vincenzo, 2002. The size and the speed of the working stroke
of muscle myosin and its dependence on the force. The Journal of
Physiology. 2002. Vol. 545, no. 1, p. 145–151. DOI dtj3gc.
PIAZZESI, Gabriella, RECONDITI, Massimo, LINARI,
Marco, LUCII, Leonardo, BIANCO, Pasquale, BRUNELLO, Elisabetta,
DECOSTRE, Valérie, STEWART, Alex, GORE, David B., IRVING, Thomas C.,
IRVING, Malcolm and LOMBARDI, Vincenzo, 2007. Skeletal Muscle
Performance Determined by Modulation of
Number of Myosin Motors Rather Than Motor
Force or Stroke Size. Cell. 2007. Vol. 131,
no. 4, p. 784–795. DOI bmsfz4.
PIAZZESI, Gabriella, RECONDITI, Massimo, LINARI,
Marco, LUCII, Leonardo, SUN, Yin-Biao, NARAYANAN, Theyencheri, BOESECKE,
Peter, LOMBARDI, Vincenzo and IRVING, Malcolm, 2002. Mechanism of force
generation by myosin heads in skeletal muscle. Nature. 2002.
Vol. 415, no. 6872, p. 659–662. DOI frsg7p.
PIAZZESI, G. and LOMBARDI, V., 1995. A
cross-bridge model that is able to explain mechanical and energetic
properties of shortening muscle. Biophysical Journal. 1995.
Vol. 68, no. 5, p. 1966–1979. DOI c3nkhz.
PINZAUTI, Francesca, PERTICI, Irene, RECONDITI,
Massimo, NARAYANAN, Theyencheri, STIENEN, Ger J. M., PIAZZESI,
Gabriella, LOMBARDI, Vincenzo, LINARI, Marco and CAREMANI, Marco, 2018.
The force and stiffness of myosin motors in the isometric twitch of a
cardiac trabecula and the effect of the extracellular calcium
concentration. The Journal of Physiology. 2018. Vol. 596,
no. 13, p. 2581–2596. DOI gmtzp9.
PLAÇAIS, P.-Y., BALLAND, M., GUÉRIN, T., JOANNY,
J.-F. and MARTIN, P., 2009. Spontaneous Oscillations of a
Minimal Actomyosin System under Elastic
Loading. Physical Review Letters. 2009. Vol. 103,
no. 15, p. 158102. DOI cdjrzv.
PODOLSKY, R. J., NOLAN, A C and ZAVELER, S A,
1969. Cross-bridge properties derived from muscle isotonic velocity
transients. Proceedings of the National Academy of Sciences of the
United States of America. 1969. Vol. 64, no. 2, p. 504–511.
POLLARD, Thomas D., 2018. Evolution of research
on cellular motility over five decades. Biophysical Reviews.
2018. Vol. 10, no. 6, p. 1503–1508. DOI gqjswp.
POWERS, Joseph D., BIANCO, Pasquale, PERTICI,
Irene, RECONDITI, Massimo, LOMBARDI, Vincenzo and PIAZZESI, Gabriella,
2020. Contracting striated muscle has a dynamic I-band
spring with an undamped stiffness 100 times larger than the passive
stiffness. The Journal of Physiology. 2020. Vol. 598, no. 2,
p. 331–345. DOI gm3sgx.
POWERS, Krysta, SCHAPPACHER-TILP, Gudrun, JINHA,
Azim, LEONARD, Tim, NISHIKAWA, Kiisa and HERZOG, Walter, 2014. Titin
force is enhanced in actively stretched skeletal muscle. Journal of
Experimental Biology. 2014. P. jeb.105361. DOI 10.1242/jeb.105361.
PRAKASH, Muthuramalingam, LEMAIRE, Thibault,
CARUEL, Matthieu, LEWERENZ, Marius, DE LEEUW, Nora H., DI TOMMASO, Devis
and NAILI, Salah, 2017. Anisotropic diffusion of water molecules in
hydroxyapatite nanopores. Physics and Chemistry of Minerals.
2017. Vol. 44, no. 7, p. 509–519. DOI gbphjp.
PRAKASH, Muthuramalingam, LEMAIRE, Thibault, DI
TOMMASO, Devis, DE LEEUW, Nora, LEWERENZ, Marius, CARUEL, Matthieu and
NAILI, Salah, 2017. Transport properties of water molecules confined
between hydroxyapaptite surfaces: A Molecular dynamics
simulation approach. Applied Surface Science. 2017. Vol. 418,
p. 296–301. DOI gmtzzr.
PROTTI, Ilaria, VAN DEN ENDEN, Antoon, VAN
MIEGHEM, Nicolas M., MEUWESE, Christiaan L. and MEANI, Paolo, 2024.
Looking Back, Going Forward:
Understanding Cardiac Pathophysiology from
Pressure–Volume Loops. Biology. 2024.
Vol. 13, no. 1, p. 55. DOI 10.3390/biology13010055.
RABIEERAD, Mehrdad, GHASEMPOURDABAGHI, Ghazal,
ZARE, Mohammad M. and AMANI-BENI, Reza, 2023. Novel
Treatments of Hypertrophic Cardiomyopathy in
GDMT for Heart Failure: A
State-of-art Review. Current Problems in Cardiology.
2023. Vol. 48, no. 9, p. 101740. DOI 10.1016/j.cpcardiol.2023.101740.
RAYMENT, Ivan, HOLDEN, Hazel M, WHITTAKER,
Michael, YOHN, Christopher B, LORENZ, Michael, HOLMES, Kenneth and
MILLIGAN, Ronald A, 1993. Structure of the actin-myosin complex and its
implications for muscle contraction. Science. 1993. Vol. 261,
no. 5117, p. 58–65. DOI cjj44w.
RAYMENT, Ivan, RYPNIEWSKI, Wojciech R,
SCHMIDT-BASE, Karen, SMITH, Robert, TOMCHICK, Diana R, BENNING, Matthew
M, WINKELMANN, Donald A, WESENBERG, Gary and HOLDEN, Hazel M, 1993.
Three-dimensional structure of myosin subfragment-1: A molecular motor.
Science. 1993. Vol. 261, no. 5117, p. 50–58.
RECONDITI, Massimo, 2006. Recent improvements in
small angle x-ray diffraction for the study of muscle physiology.
Reports on Progress in Physics. Online. 2006. Vol. 69, no. 10,
p. 2709–2759. DOI 10.1088/0034-4885/69/10/R01.
[Accessed 16 September 2021].
RECONDITI, Massimo, CAREMANI, Marco, PINZAUTI,
Francesca, POWERS, Joseph D., NARAYANAN, Theyencheri, STIENEN, Ger J.
M., LINARI, Marco, LOMBARDI, Vincenzo and PIAZZESI, Gabriella, 2017.
Myosin filament activation in the heart is tuned to the mechanical task.
Proc Natl Acad Sci USA. 2017. Vol. 114, no. 12, p. 3240–3245.
DOI f9vq5m.
RECONDITI, Massimo, LINARI, Marco, LUCII,
Leonardo, STEWART, Alex, SUN, Yin-Biao, BOESECKE, Peter, NARAYANAN,
Theyencheri, FISCHETTI, Robert F., IRVING, Tom, PIAZZESI, Gabriella,
IRVING, Malcolm and LOMBARDI, Vincenzo, 2004. The myosin motor in muscle
generates a smaller and slower working stroke at higher load.
Nature. Online. 2004. Vol. 428, no. 6982, p. 578–581. DOI dfh49n. [Accessed 16 September 2021].
REGAZZONI, Francesco, DEDÈ, Luca and QUARTERONI,
Alfio, 2020. Biophysically detailed mathematical
models of multiscale cardiac active mechanics. PLOS
Computational Biology. 2020. Vol. 16, no. 10, p. e1008294. DOI 10.1371/journal.pcbi.1008294.
REGAZZONI, Francesco, SALVADOR, Matteo, DEDE’,
Luca and QUARTERONI, Alfio, 2022. A machine learning method for
real-time numerical simulations of cardiac electromechanics.
Computer Methods in Applied Mechanics and Engineering. Online.
2022. Vol. 393, p. 114825. DOI 10.1016/j.cma.2022.114825.
[Accessed 4 October 2023].
ROBERT-PAGANIN, Julien, PYLYPENKO, Olena, KIKUTI,
Carlos, SWEENEY, H. Lee and HOUDUSSE, Anne, 2020. Force
Generation by Myosin Motors: A
Structural Perspective. Chem. Rev. 2020. Vol. 120,
no. 1, p. 5–35. DOI gmtzrv.
ROCK, Ronald S., RICE, Sarah E., WELLS, Amber L.,
PURCELL, Thomas J., SPUDICH, James A. and SWEENEY, H. Lee, 2001. Myosin
VI is a processive motor with a large step size.
Proceedings of the National Academy of Sciences. 2001. Vol. 98,
no. 24, p. 13655–13659. DOI 10.1073/pnas.191512398.
ROOTS, H., OFFER, G. W. and RANATUNGA, K. W.,
2007. Comparison of the tension responses to ramp shortening and
lengthening in intact mammalian muscle fibres: Crossbridge and
non-crossbridge contributions. Journal of Muscle Research and Cell
Motility. Online. 2007. Vol. 28, no. 2-3, p. 123–139. DOI d9dff9. [Accessed 16 September 2021].
ROSSIGNOL, Patrick, HERNANDEZ, Adrian F, SOLOMON,
Scott D and ZANNAD, Faiez, 2019. Heart failure drug treatment.
Lancet. 2019. Vol. 393, no. 10175, p. 1034–1044. DOI 10.1016/s0140-6736(18)31808-7.
ROTHMAN, James E., GRUSHIN, Kirill, BERA,
Manindra and PINCET, Frederic, 2023. Turbocharging synaptic
transmission. FEBS Letters. Online. 2023. Vol. 597, no. 18,
p. 2233–2249. DOI 10.1002/1873-3468.14718.
[Accessed 16 October 2023].
SAPER, Gadiel and HESS, Henry, 2020. Synthetic
Systems Powered by Biological Molecular
Motors. Chemical Reviews. 2020. Vol. 120, no. 1,
p. 288–309. DOI 10.1021/acs.chemrev.9b00249.
SCHAPPACHER-TILP, Gudrun, LEONARD, Timothy,
DESCH, Gertrud and HERZOG, Walter, 2015. A Novel Three-Filament
Model of Force Generation in Eccentric
Contraction of Skeletal Muscles. PLOS ONE.
2015. Vol. 10, no. 3, p. e0117634. DOI 10.1371/journal.pone.0117634.
SCHOENAUER, Roman, BERTONCINI, Patricia,
MACHAIDZE, Gia, AEBI, Ueli, PERRIARD, Jean-Claude, HEGNER, Martin and
AGARKOVA, Irina, 2005. Myomesin is a Molecular Spring with
Adaptable Elasticity. J Mol Biol. 2005. Vol. 349,
no. 2, p. 367–379. DOI 10.1016/j.jmb.2005.03.055.
SHESHKA, Raman and TRUSKINOVSKY, Lev, 2014.
Power-stroke-driven actomyosin contractility. Phys Rev E. 2014.
Vol. 89, no. 1, p. 012708–12. DOI 10.1103/physreve.89.012708.
SHIMAMOTO, Y., SUZUKI, M., MIKHAILENKO, S. V.,
YASUDA, K. and ISHIWATA, S., 2009. Inter-sarcomere coordination in
muscle revealed through individual sarcomere response to quick stretch.
Proceedings of the National Academy of Sciences. 2009.
Vol. 106, no. 29, p. 11954–11959. DOI crcjzf.
SMITH, D. A. and GEEVES, M. A., 1995a.
Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior. Biophysical
Journal. 1995. Vol. 69, no. 2, p. 538–552. DOI 10.1016/S0006-3495(95)79927-1.
SMITH, D. A. and GEEVES, M. A., 1995b.
Strain-dependent cross-bridge cycle for muscle. Biophys J.
1995. Vol. 69, no. 2, p. 524–537. DOI 10.1016/s0006-3495(95)79926-x.
SMITH, D. A., GEEVES, M. A., SLEEP, J. and
MIJAILOVICH, S. M., 2008. Towards a Unified Theory of
Muscle Contraction. I:
Foundations. Ann Biomed Eng. 2008. Vol. 36,
no. 10, p. 1624–1640. DOI b3tnkk.
SMITH, D. A. and MIJAILOVICH, S. M., 2008. Toward
a Unified Theory of Muscle Contraction.
II: Predictions with the Mean-Field
Approximation. Ann Biomed Eng. 2008. Vol. 36, no. 8,
p. 1353–1371. DOI ctxn66.
SOMMER, Gerhard, SCHRIEFL, Andreas J., ANDRÄ,
Michaela, SACHERER, Michael, VIERTLER, Christian, WOLINSKI, Heimo and
HOLZAPFEL, Gerhard A., 2015. Biomechanical properties and microstructure
of human ventricular myocardium. Acta Biomaterialia. 2015.
Vol. 24, p. 172–192. DOI 10.1016/j.actbio.2015.06.031.
SPUDICH, James A., RICE, Sarah E., ROCK, Ronald
S., PURCELL, Thomas J. and WARRICK, Hans M., 2011. Optical
Traps to Study Properties of Molecular
Motors. Cold Spring Harbor Protocols. 2011. Vol. 2011,
no. 11, p. pdb.top066662. DOI 10.1101/pdb.top066662.
SQUARCI, Caterina, BIANCO, Pasquale, RECONDITI,
Massimo, PERTICI, Irene, CAREMANI, Marco, NARAYANAN, Theyencheri,
HORVÁTH, Ádám I., MÁLNÁSI-CSIZMADIA, András, LINARI, Marco, LOMBARDI,
Vincenzo and PIAZZESI, Gabriella, 2023. Titin activates myosin filaments
in skeletal muscle by switching from an extensible spring to a
mechanical rectifier. Proceedings of the National Academy of
Sciences. Online. 2023. Vol. 120, no. 9, p. e2219346120. DOI 10.1073/pnas.2219346120.
[Accessed 24 February 2023].
STOJANOVIC, Boban, SVICEVIC, Marina,
KAPLAREVIC-MALISIC, Ana, GILBERT, Richard J. and MIJAILOVICH, Srboljub
M., 2019. Multi-scale striated muscle contraction model linking
sarcomere length-dependent cross-bridge kinetics to macroscopic
deformation. J. Comput. Sci. 2019. P. 101062. DOI 10.1016/j.jocs.2019.101062.
STREETER JR., Daniel D. and BASSETT, David L.,
1966. An engineering analysis of myocardial fiber orientation in pig’s
left ventricle in systole. The Anatomical Record. 1966.
Vol. 155, no. 4, p. 503–511. DOI 10.1002/ar.1091550403.
SUGIURA, Seiryo, OKADA, Jun-Ichi, WASHIO, Takumi
and HISADA, Toshiaki, 2022. UT-Heart:
A Finite Element Model Designed for the
Multiscale and Multiphysics Integration of our
Knowledge on the Human Heart. In:
CORTASSA, Sonia and AON, Miguel A. (eds.), Computational
Systems Biology in Medicine and
Biotechnology: Methods and
Protocols. New York, NY: Springer US. p. 221–245.
ISBN 978-1-07-161831-8.
SUGIURA, Seiryo, WASHIO, Takumi, HATANO, Asuka,
OKADA, Junichi, WATANABE, Hiroshi and HISADA, Toshiaki, 2012.
Multi-scale simulations of cardiac electrophysiology and mechanics using
the University of Tokyo heart simulator.
Progress in Biophysics and Molecular Biology. 2012. Vol. 110,
no. 2, p. 380–389. DOI 10.1016/j.pbiomolbio.2012.07.001.
SVOBODA, Karel, SCHMIDT, Christoph F., SCHNAPP,
Bruce J. and BLOCK, Steven M., 1993. Direct observation of kinesin
stepping by optical trapping interferometry. Nature. 1993.
Vol. 365, no. 6448, p. 721–727. DOI 10.1038/365721a0.
SZNITMAN, Alain-Sol, 1991. Topics in propagation
of chaos. Ecole d’été de
probabilités de Saint-Flour XIX—1989. 1991. Vol. 1464,
p. 165–251. DOI 10.1007/BFb0085169.
TAMBORRINI, Davide, WANG, Zhexin, WAGNER,
Thorsten, TACKE, Sebastian, STABRIN, Markus, GRANGE, Michael, KHO, Ay
Lin, REES, Martin, BENNETT, Pauline, GAUTEL, Mathias and RAUNSER,
Stefan, 2023. Structure of the native myosin filament in the relaxed
cardiac sarcomere. Nature. Online. 2023. P. 1–9. DOI 10.1038/s41586-023-06690-5.
TER KEURS, Henk E. D. J., SHINOZAKI, Tsuyoshi,
ZHANG, Ying Ming, ZHANG, Mei Luo, WAKAYAMA, Yuji, SUGAI, Yoshinao,
KAGAYA, Yutaka, MIURA, Masahito, BOYDEN, Penelope A., STUYVERS, Bruno D.
M. and LANDESBERG, Amir, 2008. Sarcomere mechanics in uniform and
non-uniform cardiac muscle: A link between pump function
and arrhythmias. Progress in Biophysics and Molecular Biology.
2008. Vol. 97, no. 2-3, p. 312–331. DOI b3qk99.
TOZZINI, Valentina, 2005. Coarse-grained models
for proteins. Current Opinion in Structural Biology. 2005.
Vol. 15, no. 2, p. 144–150. DOI bj7js5.
TRAYANOVA, Natalia A. and RICE, John Jeremy,
2011. Cardiac Electromechanical Models: From
Cell to Organ. Front. Physio. 2011. Vol. 2.
DOI cdpd7s.
TUENI, Nicole, ALLAIN, Jean-Marc and GENET,
Martin, 2023. On the structural origin of the anisotropy in the
myocardium: Multiscale modeling and analysis. Journal
of the Mechanical Behavior of Biomedical Materials. 2023. Vol. 138,
p. 105600. DOI 10.1016/j.jmbbm.2022.105600.
VEIGEL, Claudia, MOLLOY, Justin E., SCHMITZ,
Stephan and KENDRICK-JONES, John, 2003. Load-dependent kinetics of force
production by smooth muscle myosin measured with optical tweezers.
Nature Cell Biology. Online. 2003. Vol. 5, no. 11, p. 980–986.
DOI d7nctr.
[Accessed 16 September 2021].
VELDEN, Jolanda van der, HO, Carolyn Y, TARDIFF,
Jil C, OLIVOTTO, Iacopo, KNOLLMANN, Bjorn C and CARRIER, Lucie, 2015.
Research priorities in sarcomeric cardiomyopathies. CARDIOVASCULAR
RESEARCH. 2015. Vol. 105, no. 4, p. 449–456. DOI 10.1093/cvr/cvv019.
VILFAN, A and DUKE, T, 2003. Instabilities in the
transient response of muscle. Biophysical Journal. 2003.
Vol. 85, no. 2, p. 818–827.
WADMORE, Kirsty, AZAD, Amar J. and GEHMLICH,
Katja, 2021. The Role of Z-disc
Proteins in Myopathy and
Cardiomyopathy. Int J Mol Sci. 2021. Vol. 22,
no. 6, p. 3058. DOI 10.3390/ijms22063058.
WALCOTT, Sam, WARSHAW, David M. and DEBOLD,
Edward P., 2012. Mechanical Coupling between Myosin
Molecules Causes Differences between Ensemble and
Single-Molecule Measurements. Biophysical Journal.
2012. Vol. 103, no. 3, p. 501–510. DOI f37d3b.
WANG, H. and OSTER, G., 2002. Ratchets, power
strokes, and molecular motors. Applied Physics A. 2002.
Vol. 75, no. 2, p. 315–323. DOI d99s9z.
WANG, Zhexin, GRANGE, Michael, WAGNER, Thorsten,
KHO, Ay Lin, GAUTEL, Mathias and RAUNSER, Stefan, 2021. The molecular
basis for sarcomere organization in vertebrate skeletal muscle.
Cell. Online. 2021. Vol. 184, no. 8, p. 2135–2150.e13. DOI 10.1016/j.cell.2021.02.047.
[Accessed 4 January 2024].
WARSHAW, Dm, 1996. The In Vitro Motility
Assay: A Window Into the Myosin Molecular
Motor. Physiology. 1996. Vol. 11, no. 1, p. 1–7. DOI gqjsw9.
WOODHEAD, John L. and CRAIG, Roger, 2020. The
mesa trail and the interacting heads motif of myosin II.
Archives of Biochemistry and Biophysics. 2020. Vol. 680,
p. 108228. DOI 10.1016/j.abb.2019.108228.
WOODY, Michael S., GREENBERG, Michael J., BARUA,
Bipasha, WINKELMANN, Donald A., GOLDMAN, Yale E. and OSTAP, E. Michael,
2018. Positive cardiac inotrope omecamtiv mecarbil activates muscle
despite suppressing the myosin working stroke. Nat Commun.
2018. Vol. 9, no. 1, p. 3838. DOI gfcmsk.
WOODY, Michael S, WINKELMANN, Donald A,
CAPITANIO, Marco, OSTAP, E Michael and GOLDMAN, Yale E, 2019. Single
molecule mechanics resolves the earliest events in force generation by
cardiac myosin. eLife. 2019. Vol. 8, p. e49266. DOI gf9vhg.
WU, Z, HARNE, Rl and WANG, Kw, 2016. Exploring a
modular adaptive metastructure concept inspired by muscle’s
cross-bridge. Journal of Intelligent Material Systems and
Structures. 2016. Vol. 27, no. 9, p. 1189–1202. DOI f8jtf3.
YANAGIDA, Toshio, KITAMURA, Kazuo, TANAKA,
Hiroto, HIKIKOSHI IWANE, Atsuko and ESAKI, Seiji, 2000. Single molecule
analysis of the actomyosin motor. Current Opinion in Cell
Biology. 2000. Vol. 12, no. 1, p. 20–25. DOI cwnq9w.
YAO, Haimin and GAO, Huajian, 2006. Mechanics of
robust and releasable adhesion in biology: Bottom–up
designed hierarchical structures of gecko. Journal of the Mechanics
and Physics of Solids. 2006. Vol. 54, no. 6, p. 1120–1146. DOI cp4dsc.
ZHANG, Jun, CHEN, Dechin, XIA, Yijie, HUANG,
Yu-Peng, LIN, Xiaohan, HAN, Xu, NI, Ningxi, WANG, Zidong, YU, Fan, YANG,
Lijiang, YANG, Yi Isaac and GAO, Yi Qin, 2023. Artificial
Intelligence Enhanced Molecular Simulations. Journal of
Chemical Theory and Computation. 2023. Vol. 19, no. 14,
p. 4338–4350. DOI 10.1021/acs.jctc.3c00214.